相关习题
 0  264289  264297  264303  264307  264313  264315  264319  264325  264327  264333  264339  264343  264345  264349  264355  264357  264363  264367  264369  264373  264375  264379  264381  264383  264384  264385  264387  264388  264389  264391  264393  264397  264399  264403  264405  264409  264415  264417  264423  264427  264429  264433  264439  264445  264447  264453  264457  264459  264465  264469  264475  264483  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,的中点,平面,且

1)求证:

2)求与平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为是椭圆上两点,是坐标原点,且,离心率为.

(1)求椭圆的方程;

(2)过作两条相互垂直的直线分别交椭圆于,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它的外接球(即顶点在球面上且底面圆周也在球面上)的体积比为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接双流中学建校周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有()

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是曲线的切线.

1)求实数a的值以及切点坐标;

2)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点AB是抛物线上关于轴对称的两点,点E是抛物线C的准线与x轴的交点.

1)若是面积为4的直角三角形,求抛物线C的方程;

2)若直线BE与抛物线C交于另一点D,证明:直线AD过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高铁站停车场针对小型机动车收费标准如下:2小时内(含2小时)每辆每次收费5元;超过2小时不超过5小时,每增加一小时收费增加3元,不足一小时的按一小时计费;超过5小时至24小时内(含24小时)收费15元封顶。超过24小时,按前述标准重新计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:

T(小时)

频数(车次)

600

120

80

100

100

以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率。

1X表示某辆车在该停车场停车一次所交费用,求X的概率分布列及期望

2)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用少于的车辆数,求的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四棱锥中,平面PABE为线段PB的中点

1)证明:平面PDC

2)求直线DE与平面PDC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动圆过定点,且与直线相切.

1)求动圆圆心的轨迹的方程;

2)设是轨迹上异于原点的两个不同点,直线的斜率分别为,且,证明直线恒过定点,并求出该定点的坐标

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分

(Ⅰ)求椭圆C的方程;

() 求ABP的面积取最大时直线l的方程

查看答案和解析>>

同步练习册答案