科目: 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的左,右焦点分别为
,且
与短轴的一个端点Q构成一个等腰直角三角形,点P(
)在椭圆
上,过点
作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆
于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R(
)
(3)求
面积的最大值
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),
为
上的动点,
点满足
,点
的轨迹为曲线
.
(1)求曲线
的直角坐标方程;
(2)在以为
极点,
轴的正半轴为极轴的极坐标系中,射线
与
的异于极点的交点为
,与
的异于极点的交点为
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】狄利克雷是19世纪德国著名的数学家,他定义了一个“奇怪的函数”
,下列关于狄利克雷函数的叙述正确的有:______.
①
的定义域为
,值域是
②
具有奇偶性,且是偶函数
③
是周期函数,但它没有最小正周期 ④对任意的
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明:f(x)≤2x-2。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com