相关习题
 0  264332  264340  264346  264350  264356  264358  264362  264368  264370  264376  264382  264386  264388  264392  264398  264400  264406  264410  264412  264416  264418  264422  264424  264426  264427  264428  264430  264431  264432  264434  264436  264440  264442  264446  264448  264452  264458  264460  264466  264470  264472  264476  264482  264488  264490  264496  264500  264502  264508  264512  264518  264526  266669 

科目: 来源: 题型:

【题目】如图所示,在四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目: 来源: 题型:

【题目】昆明市某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300),该社团将该校区在2018年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图4,把该直方图所得频率估计为概率.

空气质量指数

空气质量等级

1级优

2级良

3级轻度污染

4度中度污染

5度重度污染

6级严重污染

(1)请估算2019年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);

(2)用分层抽样的方法共抽取10天,则空气质量指数在的天数中各应抽取几天?

(3)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为2000元,空气质量等级为3级时每天需净化空气的费用为4000元若在(2)的条件下,从空气质量指数在的天数中任意抽取两天,求这两天的净化空气总费用的分布列

查看答案和解析>>

科目: 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目: 来源: 题型:

【题目】抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为,且游客之间的选择意愿相互独立.

1)从游客中随机抽取3人,记总得分为随机变量,求的分布列与数学期望;

2)若从游客中随机抽取人,记总分恰为分的概率为,求数列的前6项和;

3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为分的概率为,探讨之间的关系,并求数列的通项公式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,一个长轴顶点在直线上,若直线与椭圆交于两点,为坐标原点,直线的斜率为,直线的斜率为.

1)求该椭圆的方程.

2)若,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面平面 分别为线段上的点,且 .

1)求证 平面

2)若与平面所成的角为求平面与平面所成的锐二面角.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列的公差不为0,其前项和为,且成等比数列.

1)求数列的通项公式及的最小值;

2)若数列是等差数列,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列的公差不为0,其前项和为,且成等比数列.

1)求数列的通项公式及的最小值;

2)若数列是等差数列,且,求的值.

查看答案和解析>>

同步练习册答案