科目: 来源: 题型:
【题目】在直角坐标系
中,已知椭圆
的离心率为
,点
在椭圆上,若圆
的一条切线(斜率存在)与椭圆C有两个交点A,B,且
.
![]()
(1)求椭圆的标准方程;
(2)求圆O的标准方程;
(3)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且
,求直线MN的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年,教育部发文确定新高考改革正式启动,湖南、广东、湖北等8省市开始实行新高考制度,从2018年下学期的高一年级学生开始实行.为了适应新高考改革,某校组织了一次新高考质量测评,在成绩统计分析中,高二某班的数学成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:
![]()
![]()
(1)求该班数学成绩在
的频率及全班人数;
(2)根据频率分布直方图估计该班这次测评的数学平均分;
(3)若规定
分及其以上为优秀,现从该班分数在
分及其以上的试卷中任取
份分析学生得分情况,求在抽取的
份试卷中至少有
份优秀的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正方体
的棱长为
,点E,F,G分别为棱AB,
,
的中点,下列结论中,正确结论的序号是___________.
![]()
①过E,F,G三点作正方体的截面,所得截面为正六边形;
②
平面EFG;
③
平面
;
④异面直线EF与
所成角的正切值为
;
⑤四面体
的体积等于
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某足球俱乐部对“一线队引援”和“青训”投入分别规划如下:2018年,该俱乐部在“一线队引援”投入资金为16000万元,“青训”投入资金为1000万元.计划每年“一线队引援”投入比上一年减少一半,“青训”投入比上一年增加一倍.
(1)请问哪一年该俱乐部“一线队引援”和“青训”投入总和最少?
(2)从2018年起(包括2018年)该俱乐部从哪一年开始“一线队引援”和“青训”总投入之和不低于62000万元?(总投入是指各年投入之和)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆锥的顶点为
,底面圆心为
,半径为
.
![]()
(1)设圆锥的母线长为
,求圆锥的体积;
(2)设
,
、
是底面半径,且
,
为线段
的中点,如图.求异面直线
与
所成的角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为
,以下结论中不正确的为
![]()
![]()
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com