科目: 来源: 题型:
【题目】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知复数z满足|z|,z的实部大于0,z2的虚部为2.
(1)求复数z;
(2)设复数z,z2,z﹣z2之在复平面上对应的点分别为A,B,C,求()的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内,,三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:
类行业:85,82,77,78,83,87;
类行业:76,67,80,85,79,81;
类行业:87,89,76,86,75,84,90,82.
(Ⅰ)计算该城区这三类行业中每类行业的单位个数;
(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,的在数集上都有定义,对于任意的,当时,或成立,则称是数集上的限制函数.
(1)求在上的限制函数的解析式;
(2)证明:如果在区间上恒为正值,则在上是增函数;[注:如果在区间上恒为负值,则在区间上是减函数,此结论无需证明,可以直接应用]
(3)利用(2)的结论,求函数在上的单调区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的左右焦点为,,是椭圆上半部分的动点,连接和长轴的左右两个端点所得两直线交正半轴于,两点(点在的上方或重合).
(1)当面积最大时,求椭圆的方程;
(2)当时,若是线段的中点,求直线的方程;
(3)当时,在轴上是否存在点使得为定值,若存在,求点的坐标,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对年利率为的连续复利,要在年后达到本利和,则现在投资值为,是自然对数的底数.如果项目的投资年利率为的连续复利.
(1)现在投资5万元,写出满年的本利和,并求满10年的本利和;(精确到0.1万元)
(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l:xy2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在线段的两端点各置一个光源,已知光源,的发光强度之比为,则线段上光照度最小的一点到,的距离之比为______(光学定律:点的光照度与到光源的距离的平方成反比,与光源的发光强度成正比)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:
(I)证明:平面 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若点在棱上,满足, ,点在棱上,且,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】由A,B,C,…等7人担任班级的7个班委.
(1)若正、副班长两职只能由A,B,C这三人中选两人担任,则有多少种分工方案?
(2)若正、副班长两职至少要选A,B,C这三人中的1人担任,有多少种分工方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com