科目: 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记
表示学生的考核成绩,并规定
为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:
![]()
(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足
的学生中任取2人,求至少有一人考核优秀的概率;
(Ⅲ)记
表示学生的考核成绩在区间
的概率,根据以往培训数据,规定当
时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:
![]()
(1)估算一下本次参加考试的同学成绩的中位数和众数;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点![]()
![]()
(1)求椭圆的方程;
(2)设不过原点
的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为
,直线l的极坐标方程为ρcos
=a,且点P在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)曲线
的极坐标方程为
.若
与
交于
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设点
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(12分)已知函数
.
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在
上为单调增函数,求a的取值范围;
(3)设m,n为正实数,且m>n,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中错误的个数是( )
①从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样
②线性回归直线
一定过样本中心点![]()
③对于一组数据
,如果将它们改变为
,则平均数与方差均发生变化
④若一组数据1、
、2、3的众数是2,则这组数据的中位数是2
⑤用系统抽样方法从编号为1,2,3,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,按照等间隔抽取的方法,则第5段中被抽中的学生编号为76
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的准线过椭圆C:
(a>b>0)的左焦点F,且点F到直线l:
(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若
,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com