科目: 来源: 题型:
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取
人进行考核,记“成绩不优秀”的乙班人数为
,求
的分布列和期望.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.命题“
”的否定是“
”
B.命题“已知
,若
则
或
”是真命题
C.命题“若
则函数
只有一个零点”的逆命题为真命题
D.“
在
上恒成立”
在
上恒成立
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在
上的函数
,
单调递增,
,若对任意
,存在
,使得
成立,则称
是
在
上的“追逐函数”.若
,则下列四个命题:①
是
在
上的“追逐函数”;②若
是
在
上的“追逐函数”,则
;③
是
在
上的“追逐函数”;④当
时,存在
,使得
是
在
上的“追逐函数”.其中正确命题的个数为( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目: 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了
个网箱,测量各水箱产品的产量(单位:kg),其频率分布直方图如下图所示.
![]()
(1)若用频率视为概率,记
表示事件“旧养殖法的箱产量低于
kg”,求事件
的概率;
(2)填写以下
列联表,并根据此判断是否有
的把握认为箱产量与养殖方法有关?
箱产量 | 箱产量 | 合计 | |
旧养殖方法 | |||
新养殖方法 | |||
合计 |
(3)根据箱产量频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到
)
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:
日期 | 1 日 | 2 日 | 3 日 | 4 日 | 5 日 | 6 日 | 7 日 | 8 日 | 9 日 | 10 日 |
元件A个数 | 9 | 15 | 12 | 18 | 12 | 18 | 9 | 9 | 24 | 12 |
日期 | 11 日 | 12 日 | 13 日 | 14 日 | 15 日 | 16 日 | 17 日 | 18 日 | 19 日 | 20 日 |
元件A个数 | 12 | 24 | 15 | 15 | 15 | 12 | 15 | 15 | 15 | 24 |
从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.
(Ⅰ)求X的分布列与数学期望;
(Ⅱ)若a,b
,且b-a=6,求
最大值;
(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE
BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD
平面BCD,如图2所示。
![]()
(Ⅰ)求证:AE
平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,函数
.
(1)求函数
在
上的最小值;
(2)函数
,若
在其定义域内有两个不同的极值点,求a的取值范围;
(3)记
的两个极值点分别为
,且
.已知
,若不等式
恒成立,求
的取值范围.注:
为自然对数的底数.
查看答案和解析>>
科目: 来源: 题型:
【题目】单位正方体ABCD-
,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i
N*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )
A.1B.
C.
D.0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
经过点
,过A作两条不同直线
,其中直线
关于直线
对称.
(1)求抛物线E的方程及其准线方程;
(2)设直线
分别交抛物线E于
两点(均不与A重合),若以线段
为直径的圆与抛物线E的准线相切,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com