科目: 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数![]()
(1)若函数
在
上递减,在
上递增,求实数
的值.
(2)若函数
在定义域上不单调,求实数
的取值范围.
(3)若方程
有两个不等实数根
,求实数
的取值范围,并证明
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:![]()
的两个焦点为
,
,焦距为
,直线
:
与椭圆
相交于
,
两点,
为弦
的中点.
(1)求椭圆的标准方程;
(2)若直线
:
与椭圆
相交于不同的两点
,
,
,若
(
为坐标原点),求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据
(单位:十亿元),绘制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.
![]()
(1)把销售额超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率;
(2)根据散点图判断,
与
哪一个适宜作为销售额
关于
的回归方程类型?(给出判断即可,不必说明理由);
(3)根据(2)的判断结果及下表中的数据,建立
关于
的回归方程,并预测2020年天猫双十一的销售额.(注:数据保留小数点后一位)
参考数据:
,
|
|
|
|
|
|
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆上顶点为
,
为椭圆中心,
为椭圆的右焦点,且焦距为
,离心率为
.
(1)求椭圆的标准方程;
(2)直线
交椭圆于
,
两点,判断是否存在直线
,使点
恰为
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知极点与平面直角坐标系的原点重合,极轴与
轴的正半轴重合,直线
的参数方程为
(
是参数),曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)设直线
与曲线
交于
,
两点,点
为曲线
上一点,求使
面积取得最大值时的
点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂生产某款机器零件,因为要求精度比较高,所以需要对生产的一大批零件进行质量检测.首先由专家根据各种系数制定了质量指标值,从生产的大批零件中选取100件作为样本进行评估,根据评估结果作出如图所示的频率分布直方图.
![]()
(1)(ⅰ)根据直方图求
及这100个零件的样本平均数
(同一组数据用该组数据区间的中点值表示);
(ⅱ)以样本估计总体,经过专家研究,零件的质量指标值
,试估计10000件零件质量指标值在
内的件数;
(2)设每个零件利润为
元,质量指标值为
,利润
与质量指标值
之间满足函数关系
.假设同组中的每个数据用该组区间的中点值代替,试估算该批零件的平均利润.(结果四舍五入,保留整数)
参考数据:
,则
,
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题
:函数
在定义域
上单调递增;命题
:
在区间
上恒成立.
(1)如果命题
为真命题,求实数
的值或取值范围;
(2)命题“
”为真命题,“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系中,以原点为极点,以
轴非负半轴为极轴建立极坐标系, 已知曲线
的极坐标方程为
,直线
的极坐标方程为
.
(Ⅰ)写出曲线
和直线
的直角坐标方程;
(Ⅱ)设直线
过点
与曲线
交于不同两点
,
的中点为
,
与
的交点为
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com