相关习题
 0  264491  264499  264505  264509  264515  264517  264521  264527  264529  264535  264541  264545  264547  264551  264557  264559  264565  264569  264571  264575  264577  264581  264583  264585  264586  264587  264589  264590  264591  264593  264595  264599  264601  264605  264607  264611  264617  264619  264625  264629  264631  264635  264641  264647  264649  264655  264659  264661  264667  264671  264677  264685  266669 

科目: 来源: 题型:

【题目】有一个长方形木块,三个侧面积分别为81224,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为(

A.2B.C.4D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线相交于点,将逆时针旋转后,与曲线相交于点,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲乙两个班级均为 40 人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为 36 人,乙班及格人数为 24 人.

(1)根据以上数据建立一个22的列联表;

(2)试判断是否成绩与班级是否有关?

参考公式:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点.

1)求的范围;

2)求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了人,患有呼吸系统疾病的人,其中人在室外工作,人在室内工作.没有患呼吸系统疾病的人,其中人在室外工作,人在室内工作.

1)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.

2)你能否在犯错误率不超过的前提下认为感染呼吸系统疾病与工作场所有关;

附表:

查看答案和解析>>

科目: 来源: 题型:

【题目】每个国家对退休年龄都有不一样的规定,从2018年开始我国关于延迟退休的话题一直在网上热议,为了了解市民对“延迟退休”的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:

年龄段(单位:岁)

被调查的人数

赞成的人数

1)从赞成“延迟退休”的人中任选1人,此人年龄在的概率为,求出表格中的值;

2)在被调查的人中,年龄低于35岁的人可以认为“低龄人”,年龄不低于35岁的人可以认为“非低龄人”,试作出是否赞成“延迟退休”与“低龄与否”的列联表,并指出有无的把握认为是否赞成“延迟退休”与“低龄与否”有关,并说明理由.

附:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=a1nxax+1aRa≠0).

1)求函数fx)的单调区间;

2)求证:n≥2nN*).

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,A(﹣20),B20),P为不在x轴上的动点,直线PAPB的斜率满足kPAkPB

1)求动点P的轨迹Γ的方程;

2)若MN是轨迹Γ上两点,kMN1,求OMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着六种不同生肖图案(包含马、羊)的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这六个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知对数函数过定点(其中),函数(其中的导函数,为常数)

1)讨论的单调性;

2)若对恒成立,且)处的导数相等,求证:.

查看答案和解析>>

同步练习册答案