科目: 来源: 题型:
【题目】给出下列结论:在回归分析中
(1)可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好;
(2)可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)可用相关系数的值判断模型的拟合效果,越大,模型的拟合效果越好;
(4)可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
以上结论中,不正确的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂有两台不同机器和生产同一种产品各万件,现从各自生产的产品中分别随机抽取件,进行品质鉴定,鉴定成绩的茎叶图如图所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过的情况下,认为机器生产的产品比机器生产的产品好;
生产的产品 | 生产的产品 | 合计 | |
良好以上(含良好) | |||
合格 | |||
合计 |
(
(3)已知优秀等级产品的利润为元/件,良好等级产品的利润为元/件,合格等级产品的利润为元/件,机器每生产万件的成本为万元,机器每生产万件的成本为万元;该工厂决定:按样本数据测算,若收益之差不超过万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?
附:1.独立性检验计算公式:.
2.临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 来源: 题型:
【题目】《周髀算经》 是我国古代的天文学和数学著作。其中一个问题的大意为:一年有二十四个节气(如图),每个节气晷长损益相同(即物体在太阳的照射下影子长度的增加量和减少量相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:ー丈等于十尺,一尺等于十寸),则立冬节气的晷长为( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接国庆汇演,学校拟对参演的班级进行奖励性加分表彰,每选中一个节目,其班级量化考核积分加3分.某班级准备了三个文娱节目,这三个节目被选中的概率分别为,,,且每个节目是否被选中是相互独立的.
(1)求该班级被加分的概率;
(2)求该班级获得奖励性积分的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市在精准扶贫和生态文明建设的专项工作中,为改善农村生态环境,建设美丽乡村,开展农村生活用水排污管道“村村通”.已知排污管道外径为1米,当两条管道并行经过一块农田时,如图,要求两根管道最近距离不小于0.25米,埋没的最小覆土厚度(路面至管顶)不低于0.5米.埋设管道前先挖掘一条横截面为等腰梯形的沟渠,且管道所在的两圆分别与两腰相切.设.
(1)为了减少农田的损毁,则当为何值时,挖掘的土方量最少?
(2)水管用吊车放入渠底前需了解吊绳的长度,在(1)的条件下计算长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】实验中学从高二级部中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1个相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级6名选手,现从每个班级6名选手中随机抽取3人回答这个问题已知这6人中,甲班级有4人可以正确回答这道题目,而乙班级6人中能正确回答这道题目的概率每人均为,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的.
(1)求甲、乙两个班级抽取的6人都能正确回答的概率;
(2)分别求甲、乙两个班级能正确回答题目人数的期望和方差、,并由此分析由哪个班级代表学校参加大赛更好?
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,椭圆经过点,右焦点到右准线和左顶点的距离相等,经过点的直线交椭圆于点.
(1)求椭圆的标准方程;
(2)点是直线上在椭圆外的一点,且,证明:点在定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中,正确的有______.
①回归直线恒过点,且至少过一个样本点;
②根据列列联表中的数据计算得出,而,则有的把握认为两个分类变量有关系,即有的可能性使得“两个分类变量有关系”的推断出现错误;
③是用来判断两个分类变量是否相关的随机变量,当的值很小时可以推断两类变量不相关;
④某项测量结果服从正态分布,则,则.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
人均纯收入 | 5 | 4 | 7 | 8 | 10 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com