科目: 来源: 题型:
【题目】设函数
.
(1)若
,求函数
在
处的切线方程;
(2)若函数在
和
处有两个极值点,其中
,
.
(i)求实数
的取值范围;
(ii)若
(e为自然对数的底数),求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的上顶点到左焦点
的距离为
.直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
![]()
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
![]()
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)如图所示,
是一个矩形花坛,其中
米,
米.现将矩形花坛
扩建成一个更大的矩形花坛
,要求:
在
上,
在
上,对角线
过
点,且矩形
的面积小于150平方米.
![]()
(1)设
长为
米,矩形
的面积为
平方米,试用解析式将
表示成
的函数,并确定函数的定义域;
(2)当
的长度是多少时,矩形
的面积最小?并求最小面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,
,且
,
的造价分别为5万元
百米,40万元
百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
,
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求
解析式;
(2)当
为多少时,总造价
最低?并求出最低造价.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,且椭圆上存在一点
,满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
,
是离心率为
的椭圆
的左、右焦点,直线
,将线段
,
分成两段,其长度之比为
,设
是
上的两个动点,线段
的中垂线与椭圆
交于
两点,线段
的中点
在直线
上.
![]()
(1)求椭圆
的方程;
(2)求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直三棱柱
中,
,
,
为
的中点.
![]()
(I)若
为
上的一点,且
与直线
垂直,求
的值;
(Ⅱ)在(I)的条件下,设异面直线
与
所成的角为45°,求直线
与平面
成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
![]()
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目: 来源: 题型:
【题目】正三棱柱
(底面是正三角形,侧棱垂直底面)的各条棱长均相等,
为
的中点,
、
分别是
、
上的动点(含端点),且满足
.当
、
运动时,下列结论中正确的个数是( )
![]()
①平面
平面
;
②三棱锥
的体积为定值;
③
可能为直角三角形;
④平面
与平面
所成的锐二面角范围为
.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com