相关习题
 0  264789  264797  264803  264807  264813  264815  264819  264825  264827  264833  264839  264843  264845  264849  264855  264857  264863  264867  264869  264873  264875  264879  264881  264883  264884  264885  264887  264888  264889  264891  264893  264897  264899  264903  264905  264909  264915  264917  264923  264927  264929  264933  264939  264945  264947  264953  264957  264959  264965  264969  264975  264983  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了个学生的评分,得到下面的茎叶图:

通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

校方将会根据评分记过对参赛选手进行三向分流:

所得分数

低于

分到

不低于

分流方向

淘汰出局

复赛待选

直接晋级

记事件获得的分流等级高于”,根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线和直线的直角坐标方程;

(Ⅱ)直线轴交点为,经过点的直线与曲线交于两点,证明:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分.

(1)求第七组的频率,并完成频率分布直方图;

(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);

(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目: 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当 时,设,讨论的导函数的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的圆心的坐标为,且圆与直线相切,过点的动直线与圆相交于两点,直线与直线的交点为.

(1)求圆的标准方程;

(2)求的最小值;

(3)问:是否是定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】影响消费水平的原因很多,其中重要的一项是工资收入.研究这两个变量的关系的一个方法是通过随机抽样的方法,在一定范围内收集被调查者的工资收入和他们的消费状况.下面的数据是某机构收集的某一年内上海、江苏、浙江、安徽、福建五个地区的职工平均工资与城镇居民消费水平(单位:万元).

地区

上海

江苏

浙江

安徽

福建

职工平均工资

9.8

6.9

6.4

6.2

5.6

城镇居民消费水平

6.6

4.6

4.4

3.9

3.8

(1)利用江苏、浙江、安徽三个地区的职工平均工资和他们的消费水平,求出线性回归方程,其中

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1万,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?(的结果保留两位小数)

(参考数据:

查看答案和解析>>

同步练习册答案