科目: 来源: 题型:
【题目】某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为80万元,同时将受到环保部门的处罚,第一个月罚4万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前4个月中的累计生产净收入g(n)是生产时间
个月的二次函数
是常数
,且前3个月的累计生产净收入可达309万元,从第5个月开始,每个月的生产净收入都与第4个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励120万元.
(1)求前6个月的累计生产净收入g(6)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造的纯收入.
查看答案和解析>>
科目: 来源: 题型:
【题目】二十四节气是中国古代的一种指导农事的补充历法,是我国劳动人民长期经验的积累成果和智慧的结晶,被誉为“中国的第五大发明”.由于二十四节气对古时候农事的进行起着非常重要的指导作用,所以劳动人民编写了很多记忆节气的歌谣:春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒.《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影是按照等差数列的规律计算出来的,在下表中,冬至的晷影最长为130.0寸,夏至的晷影最短为14.8寸,那么《易经》中所记录的清明的晷影长应为( )
![]()
A.77.2寸B.72.4寸C.67.3寸D.62.8寸
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数
对定义城内的每一个值
,在其定义域内都存在唯一的
,使得
成立,则称该函数为“
函数”.
(1)判断函数
是否为“
函数”,并说明理由;
(2)若函数
在定义域
上为“
函数”,求
的取值范围;
(3)已知函数
在定义域
上为“
函数”.若存在实数
,使得对任意的
,不等式
都成立,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
是实数.
(1)若函数
是定义在
上的奇函数,求
的值,并求方程
的解;
(2)若
对任意的
恒成立,求
的取值范围;
(3)若
,方程
有解,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:已知某公园的四处景观分别位于等腰梯形
的四个顶点处,其中
,
两地的距离为
千米,
,
两地的距离为
千米,
.现拟规划在
(不包括端点)路段上增加一个景观
,并建造观光路直接通往
处,造价为每千米
万元,又重新装饰
路段,造价为每千米
万元.
![]()
(1)若拟修建观光路
路段长为
千米,求
路段的造价;
(2)设
,当
为何值时,
,
段的总造价最低.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com