相关习题
 0  264841  264849  264855  264859  264865  264867  264871  264877  264879  264885  264891  264895  264897  264901  264907  264909  264915  264919  264921  264925  264927  264931  264933  264935  264936  264937  264939  264940  264941  264943  264945  264949  264951  264955  264957  264961  264967  264969  264975  264979  264981  264985  264991  264997  264999  265005  265009  265011  265017  265021  265027  265035  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数)。曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且此抛物线的准线被椭圆截得的弦长为.

1)求椭圆的标准方程;

2)直线交椭圆两点,线段的中点为,直线是线段的垂直平分线,试问直线是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;的最大值为

个零点;在区间单调递增.

其中所有正确结论的编号是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,点为椭圆上任意一点,点关于原点的对称点为点,有,且当的面积最大时为等边三角形.

1)求椭圆的标准方程;

2)与圆相切的直线交椭圆两点,若椭圆上存在点满足,求四边形面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为庆祝新中国成立七十周年,巴蜀中学将举行“歌唱祖国,喜迎国庆”歌咏比赛活动,《歌唱祖国》,《精忠报国》,《我和我的祖国》等一系列歌曲深受同学们的青睐,高二某班级就该班是否选择《精忠报国》作为本班参赛曲目进行投票表决,投票情况如下表.

小组

1

2

3

4

5

6

7

8

赞成人数

4

5

6

6

5

6

4

3

总人数

7

7

8

8

7

7

6

6

1)若从第1小组和第8小组的同学中各随机选取2人进行调查,求所选取的4人中至少有2人赞成《精忠报国》作为本班参赛曲目的概率;

2)若从第5小组和第7小组的同学中各随机选取2人进行调查,记选取的4人中不赞成《精忠报国》作为本班参赛曲目的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的方程为,椭圆的离心率正好是双曲线的离心率的倒数,椭圆的短轴长等于抛物线上一点到抛物线焦点的距离.

1)求椭圆的标准方程;

2)若直线与椭圆的两个交点为两点,已知圆轴的交点分别为(点轴的正半轴),且直线与圆相切,求的面积与的面积乘积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)求函数上的值域;

3)若存在,使得成立,求的最大值.(其中自然常数

查看答案和解析>>

科目: 来源: 题型:

【题目】20141219日,2014年中国数学奥林匹克竞赛(第30届全国中学生数学冬令营)在重庆市巴蜀中学举行.参加本届中国数学奥林匹克竞赛共有来自各省、市(自治区、直辖市)、香港地区、澳门地区,以及俄罗斯、新加坡等国的30余支代表队,共317名选手.竞赛为期2天,每天3道题,限时4个半小时完成.部分优胜者将参加为国际数学奥林匹克竞赛而组建的中国国家集训队.中国数学奥林匹克竞赛(全国中学生数学冬令营)是在全国高中数学联赛基础上进行的一次较高层次的数学竞赛,该项活动也是中国中学生级别最高、规模最大、最有影响的全国性数学竞赛.2020年第29届全国中学生生物学竞赛也将在重庆巴蜀中学举行.巴蜀中学校本选修课“数学建模”兴趣小组调查了2019年参加全国生物竞赛的200名学生(其中男生、女生各100人)的成绩,得到这200名学生成绩的中位数为78.200名学生成绩均在50110之间,且成绩在内的人数为30,这200名学生成绩的高于平均数的男生有62名,女生有38.并根据调查结果画出如图所示的频率分布直方图.

1)求的值;

2)填写下表,能否有的把握认为学生成绩是否高于平均数与性别有关系?

男生

女生

总计

成绩不高于平均数

成绩高于平均数

总计

参考公式及数据:,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图甲,正方形的边长为4分别为的中点,以为棱将正方形折成如图乙所示,且,点在线段上且不与点重合,直线与由三点所确定的平面相交,交点为.

1)若,试确定点的位置,并证明直线平面

2)若,求点到平面的距离.

查看答案和解析>>

同步练习册答案