科目: 来源: 题型:
【题目】已知椭圆的离心率是,且经过点.
(1)求椭圆C的标准方程;
(2)过右焦点F的直线l与椭圆C相交于A,B两点,点B关于x轴的对称点为H,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.参考公式:,
(1)求出q的值;
(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程;
(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个是“好数据”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设曲线与直线的交点为,,是曲线上的动点,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率,点,点、分别为椭圆的上顶点和左焦点,且.
(1)求椭圆的方程;
(2)若过定点的直线与椭圆交于,两点(在,之间)设直线的斜率,在轴上是否存在点,使得以,为邻边的平行四边形为菱形?如果存在,求出的取值范围?如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校200名高中学生的课外体育锻炼平均每天运动的时间进行调查,数据如下表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间(分钟) | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取10名学生,再从这10名学生中随机抽取3人了解他们锻炼时间偏少的原因,记所抽取的3人中男生的人数为随机变量为,求的分布列和数学期望.
(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有高中学生中,抽取4名学生,求其中恰好有2名学生是课外体育达标的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.
(1)证明:直线∥面;
(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线的两顶点分别为,为双曲线的一个焦点,为虚轴的一个端点,若在线段上(不含端点)存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com