科目: 来源: 题型:
【题目】设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
?若存在,写出该圆的方程,若不存在说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测
株树苗的高度,经数据处理得到如图1所示的频率分布直方图,其中最高的
株树苗的高度的茎叶图如图2所示,以这
株树苗的高度的频率估计整批树苗高度的概率.
![]()
(1)求这批树苗的高度于
米的概率,并求图
中
的值;
(2)若从这批树苗中随机选取
株,记
为高度在
的树苗数量,求
的分布列和数学期望;
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布,如果这批树苗的高度近似于正态分布
的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗是否被签收?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正方形
,
分别是
的中点,将
沿
折起,如图所示,记二面角
的大小为![]()
![]()
(1)证明:![]()
(2)若
为正三角形,试判断点
在平面
内的身影
是否在直线
上,证明你的结论,并求角
的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②将某校参加摸底测试的1200名学生编号为1,2,3,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为92;③线性回归方程
必经过点
;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有
的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】某生鲜超市每天从蔬菜生产基地购进某种蔬菜,每天的进货量相同,进价6元/千克,售价9元/千克,当天未售出的蔬菜被生产基地以2元/千克的价格回收处理.该超市发现这种蔬菜每天都有剩余,为此整理了过往30天这种蔬菜的日需求量
(单位:千克),得到如下统计数据:
日需求量 | 160 | 170 | 180 | 190 | 200 | 210 | 220 |
天数 | 3 | 6 | 6 | 9 | 4 | 1 | 1 |
以这30天记录的各日需求量的频率作为各日需求量的概率,假设各日需求量相互独立.
(1)求在未来的3天中,至多有1天的日需求量不超过190千克的概率;
(2)超市为了减少浪费,提升利润,决定调整每天的进货量
(单位:千克),以销售这种蔬菜的日利润的期望值为决策依据,在
与
之中选其一,应选用哪个?
查看答案和解析>>
科目: 来源: 题型:
【题目】设圆
的圆心为
,直线
过点
且与
轴不重合,交圆
于
,
两点,过点
作
的平行线交
于点
.
(1)求
的值;
(2)设点
的轨迹为曲线
,直线
与曲线
相交于
,
两点,与直线
相交于
点,试问在椭圆
上是否存在一定点
,使得
,
,
成等差数列(其中
,
,
分别指直线
,
,
的斜率).若存在,求出
点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
的极坐标方程为
.
(1)求曲线
与直线
的直角坐标方程.
(2)直线
与
轴的交点为
,与曲线
的交点为
,
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com