相关习题
 0  264882  264890  264896  264900  264906  264908  264912  264918  264920  264926  264932  264936  264938  264942  264948  264950  264956  264960  264962  264966  264968  264972  264974  264976  264977  264978  264980  264981  264982  264984  264986  264990  264992  264996  264998  265002  265008  265010  265016  265020  265022  265026  265032  265038  265040  265046  265050  265052  265058  265062  265068  265076  266669 

科目: 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:

(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?

(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有人,超过210千卡的有人,设的分布列及数学期望.

附: 其中.

参考数据:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】是两个非零平面向量则有

①若

②若

③若则存在实数使得

④若存在实数使得四个命题中真命题的序号为 __________.(填写所有真命题的序号)

【答案】①③④

【解析】逐一考查所给的结论:

①若,则,据此有:,说法①正确;

②若,则

,说法②错误;

③若,则,据此有:

由平面向量数量积的定义有:

则向量反向,故存在实数,使得,说法③正确;

④若存在实数,使得,则向量与向量共线,

此时

若题中所给的命题正确,则

该结论明显成立.即说法④正确;

综上可得:真命题的序号为①③④.

点睛:处理两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.

型】填空
束】
17

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】若存在实常数kb,使得函数对其公共定义域上的任意实数x都满足:恒成立,则称此直线隔离直线,已知函数(e为自然对数的底数),有下列命题:

内单调递增;

之间存在隔离直线,且b的最小值为

之间存在隔离直线,且k的取值范围是

之间存在唯一的隔离直线

其中真命题的序号为__________.(请填写正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程为,曲线的极坐标方程为

求直线的普通方程与曲线的直角坐标方程;

若把曲线上给点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当时,求的单调区间;

(2)设,且函数的解析式可以表示成,当函数有且只有一个零点时,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为.

(1)求椭圆的方程;

(2)若动直线与椭圆有且仅有一个公共点,分别过两点作,垂足分别为,且记为点到直线的距离, 为点到直线的距离,为点到点的距离,试探索是否存在最大值.若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】新《水污染防治法》已由中华人民共和国第十二届全国人民代表大会常务委员会第二十八次会议于2017627日通过,自201811日起施行.201831日,某县某质检部门随机抽取了县域内100眼水井,检测其水质总体指标.

罗斯水质指数

02

24

46

68

810

水质状况

腐败污水

严重污染

污染

轻度污染

纯净

1)求所抽取的100眼水井水质总体指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).

2)①由直方图可以认为,100眼水井水质总体指标值服从正态分布,利用该正态分布,求落在(5.215.99)内的概率;

②将频率视为概率,若某乡镇抽查5眼水井的水质,记这5眼水井水质总体指标值位于(610)内的井数为,求的分布列和数学期望.

附:①计算得所抽查的这100眼水井总体指标的标准差为

②若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是等腰梯形,是等边三角形,点上,且

1)证明://平面

2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的极坐标方程为,直线的参数方程为为参数,).

(1)求曲线和直线的直角坐标方程;

(2)若直线与曲线交于两点,且,求以为直径的圆的方程.

查看答案和解析>>

同步练习册答案