相关习题
 0  264892  264900  264906  264910  264916  264918  264922  264928  264930  264936  264942  264946  264948  264952  264958  264960  264966  264970  264972  264976  264978  264982  264984  264986  264987  264988  264990  264991  264992  264994  264996  265000  265002  265006  265008  265012  265018  265020  265026  265030  265032  265036  265042  265048  265050  265056  265060  265062  265068  265072  265078  265086  266669 

科目: 来源: 题型:

【题目】2020年春节期间,全国人民都在抗击新型冠状病毒肺炎的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用AB两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:

所用的时间(单位:小时)

路线1的频数

200

400

200

200

路线2的频数

100

400

400

100

假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.

1)汽车A和汽车B应如何选择各自的路线.

2)若路线1、路线2一次性费用分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):

到达时间与约定时间的差x(单位:小时)

该车得分

0

1

2

生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车AB用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知四边形是菱形,平面平面.

1)求证:平面平面.

2)若,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的看云识天气的经验,并将这些经验编成谚语,如天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证日落云里走,雨在半夜后,观察了所在地区A100天日落和夜晚天气,得到如下列联表:

夜晚天气

日落云里走

下雨

未下雨

出现

25

5

未出现

25

45

临界值表

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

并计算得到,下列小波对地区A天气判断不正确的是(

A.夜晚下雨的概率约为

B.未出现日落云里走夜晚下雨的概率约为

C.的把握认为“‘日落云里走是否出现当晚是否下雨有关

D.出现日落云里走,有的把握认为夜晚会下雨

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.

1)将曲线的参数方程化为极坐标方程;

2)设直线的参数方程为(其中为参数),若与曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.若函数的图象在点处的切线的图象也相切.

1)求的方程和的值;

2)设不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设点为圆上的动点,过点轴的垂线,垂足为,动点满足,记点的轨迹为

1)求曲线的方程;

2)已知点,斜率为的直线与曲线交于不同的两点,且满足,试求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着经济的不断发展和人们消费观念的不断提升,越来越多的人日益喜爱旅游观光.某人想在20195月到某景区旅游观光,为了避开旅游高峰拥挤,方便出行,他收集了最近5个月该景区的观光人数数据见下表:

月份

2018.12

2019.1

2019.2

2019.3

2019.4

月份编号

1

2

3

4

5

旅游观光人数(百万人)

0.5

0.6

1

1.4

1.7

1)由收集数据的散点图发现,可用线性回归模型拟合旅游观光人数少(百万人)与月份编号之间的相关关系,请用最小二乘法求关于的线性回归方程,并预测20195月景区的旅游观光人数.

2)当地旅游局为了预测景区给当地的财政带来的收入状况,从20194月的旅游观光人群中随机抽取了200人,并对他们旅游观光过程中的开支情况进行了调查,得到如下频率分布表:

开支金额(千元)

频数

10

30

40

60

30

20

10

若采用分层抽样的方法从开支金额低于4千元的游客中抽取8人,再在这8人中抽取3人,记这3人中开支金额低于3千元的人数为,求的分布列和数学期望.

(参考公式:,其中.)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在三棱柱中,为棱的中点.

1)求证:平面

2)若平面,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:a2+b2)(c2+d2ac+bd2当且仅当adbc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案