相关习题
 0  265020  265028  265034  265038  265044  265046  265050  265056  265058  265064  265070  265074  265076  265080  265086  265088  265094  265098  265100  265104  265106  265110  265112  265114  265115  265116  265118  265119  265120  265122  265124  265128  265130  265134  265136  265140  265146  265148  265154  265158  265160  265164  265170  265176  265178  265184  265188  265190  265196  265200  265206  265214  266669 

科目: 来源: 题型:

【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:

若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中AB城市的用户对此授课方式“认可”的频率分别作为AB城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,点,()在曲线C上,直线l过点且与垂直,垂足为P

(Ⅰ)当时,求在直角坐标系下点P坐标和l的方程;

(Ⅱ)当MC上运动且P在线段上时,求点P在极坐标系下的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若存在极值,求实数a的取值范围;

2)设,设是定义在上的函数.

)证明:上为单调递增函数(的导函数);

)讨论的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,过点的直线l与抛物线交于AB两点,以AB为直径作圆,记为,与抛物线C的准线始终相切.

1)求抛物线C的方程;

2)过圆心Mx轴垂线与抛物线相交于点N,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,真四棱柱的底面是菱形,EMN分别是BC的中点.

1)证明:

2)求平面DMN与平面所成锐角的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知棱长为2的正方体中,EDC中点,F在线段上运动,则三棱锥的外接球的表面积最小值为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线的参数方程为t为参数),以坐标原点为极点,正半轴为极轴,建立极坐标系,曲线的极坐标方程是

1)写出直线的极坐标方程与曲线的直角坐标方程;

2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=axlnxx2ax+1aR)在定义域内有两个不同的极值点.

1)求实数a的取值范围;

2)设两个极值点分别为x1x2x1x2,证明:fx1+fx2)<2x12+x22.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的离心率为,与坐标轴分别交于AB两点,且经过点Q1).

)求椭圆C的标准方程;

)若Pmn)为椭圆C外一动点,过点P作椭圆C的两条互相垂直的切线l1l2,求动点P的轨迹方程,并求ABP面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2016年春节期间全国流行在微信群里发、抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如表:

I)求产生的手气红包的金额不小于9元的频率;

)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);

)在这50个红包组成的样本中,将频率视为概率.

i)若红包金额在区间[2125]内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;

ii)随机抽取手气红包金额在[15)∪[2125]内的两名幸运者,设其手气金额分别为mn,求事件“|mn|16”的概率.

查看答案和解析>>

同步练习册答案