相关习题
 0  265064  265072  265078  265082  265088  265090  265094  265100  265102  265108  265114  265118  265120  265124  265130  265132  265138  265142  265144  265148  265150  265154  265156  265158  265159  265160  265162  265163  265164  265166  265168  265172  265174  265178  265180  265184  265190  265192  265198  265202  265204  265208  265214  265220  265222  265228  265232  265234  265240  265244  265250  265258  266669 

科目: 来源: 题型:

【题目】已知椭圆的离心率为,左右顶点分别为,右焦点为为椭圆上异于的动点,且面积的最大值为.

1)求椭圆的方程;

2)设直线轴交于点,过点的平行线交轴与点,试探究是否存在定点,使得以为直径的圆恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年春节前后,中国爆发新型冠状病毒(SARS-Cov-2)如图所示为124日至216日中国内地(除湖北以外的)感染新型冠状病毒新增人数的折线图,为了预测分析数据的变化规律,建立了与时间变量的不同时间段的两个线性回归模型.根据124日至23日的数据(时间变量的值依次为1234567891011)建立模型①:;根据24日至216日的数据(时间变量的值依次为12131415161718192021222324)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出两个回归直线方程;(计算结果取整数)

2)中国政府为了人民的生命安全,听取专家意见,了解了病毒信息,并迅速做出一系列的隔离防护措施,但新冠状病毒在世界范围内爆发时,某些欧美国家采取放任的态度,不治疗、不隔离、不检测,甚至不公布,请你用以上数据说明采取一系列措施的必要性,不采取措施的后果.

参考数据:

参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,边长为4的正方形中点,边上一动点,现将分别沿折起,使得重合为点,形成四棱锥,过点平面.①平面平面;②当中点时,三棱锥的体积为;③的垂心;④长的取值范围为 .则以上判断正确的有______(填正确命题的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】中国有四大国粹:京剧、武术、中医和书法.某大学开设这四门课供学生选修,男生甲选其中三门课进行学习,已知他选修了京剧,则他选修书法的概率为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数

1)设是函数的导函数,求的单调区间;

2)证明:当时,在区间上有极大值点,且

查看答案和解析>>

科目: 来源: 题型:

【题目】为进一步深化“平安校园”创建活动,加强校园安全教育宣传,某高中对该校学生进行了安全教育知识测试(满分100分),并从中随机抽取了200名学生的成绩,经过数据分析得到如图1所示的频数分布表,并绘制了得分在以及的茎叶图,分别如图23所示.

成绩

频数

5

30

40

50

45

20

10

1

1)求这200名同学得分的平均数;(同组数据用区间中点值作代表)

2)如果变量满足,则称变量“近似满足正态分布的概率分布”.经计算知样本方差为210,现在取分别为样本平均数和方差,以样本估计总体,将频率视为概率,如果该校学生的得分“近似满足正态分布的概率分布”,则认为该校的校园安全教育是成功的,否则视为不成功.试判断该校的安全教育是否成功,并说明理由.

3)学校决定对90分及以上的同学进行奖励,为了体现趣味性,采用抽奖的方式进行,其中得分不低于94的同学有两次抽奖机会,低于94的同学只有一次抽奖机会,每次抽奖的奖金及对应的概率分别为:

奖金

50

100

概率

现在从不低于90同学中随机选一名同学,记其获奖金额为,以样本估计总体,将频率视为概率,求的分布列和数学期望.

(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图一分别为的中点,上,且中点,将沿折起,沿折起,使得重合于一点(如图二),设为

1)求证:平面

2)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:.

1)求该封闭曲线所围成的图形面积;

2)若直线与曲线恰有3个公共点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某水果批发商经销某种水果(以下简称水果),购入价为300/袋,并以360/袋的价格售出,若前8小时内所购进的水果没有售完,则批发商将没售完的水果以220/袋的价格低价处理完毕(根据经验,2小时内完全能够把水果低价处理完,且当天不再购入).该水果批发商根据往年的销量,统计了100水果在每天的前8小时内的销售量,制成如下频数分布条形图.

表示水果一天前8小时内的销售量,表示水果批发商一天经营水果的利润,表示水果批发商一天批发水果的袋数.

1)若,求的函数解析式;

2)假设这100天中水果批发商每天购入水果15袋或者16袋,分别计算该水果批发商这100天经营水果的利润的平均数,以此作为决策依据,每天应购入水果15袋还是16袋?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MNP分别是C1D1BCA1D1的中点,有下列四个结论:

APCM是异面直线;②APCMDD1相交于一点;③MNBD1

MN∥平面BB1D1D

其中所有正确结论的编号是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

同步练习册答案