科目: 来源: 题型:
【题目】已知椭圆的离心率,且椭圆过点
(1)求椭圆的标准方程;
(2)设直线与交于、两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式 其中)
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥中,侧面PAD是等边三角形,且平面平面ABCD,,.
(1)AD上是否存在一点M,使得平面平面ABCD;若存在,请证明,若不存在,请说明理由;
(2)若的面积为,求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:,)
A.2B.4C.6D.8
查看答案和解析>>
科目: 来源: 题型:
【题目】是边长为的等边三角形,E、F分别为AB、AC的中点,,沿EF把折起,使点A翻折到点P的位置,连接PB、PC,则四棱锥的外接球的表面积的最小值为________,此时四棱锥的体积为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.
(1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;
(2)若过点(极坐标)且倾斜角为的直线l与曲线C交于M,N两点,弦MN的中点为P,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验669人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案一:将每个人的血分别化验,这时需要验669次.
方案二:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这时该组个人的血总共需要化验次.
假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.
(1)设方案二中,某组个人中每个人的血化验次数为,求的分布列.
(2)设,试比较方案二中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案一,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线()上的两个动点和,焦点为F.线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com