相关习题
 0  265389  265397  265403  265407  265413  265415  265419  265425  265427  265433  265439  265443  265445  265449  265455  265457  265463  265467  265469  265473  265475  265479  265481  265483  265484  265485  265487  265488  265489  265491  265493  265497  265499  265503  265505  265509  265515  265517  265523  265527  265529  265533  265539  265545  265547  265553  265557  265559  265565  265569  265575  265583  266669 

科目: 来源: 题型:

【题目】如图所示,三棱锥中,面.

1)若,求证:

2)若,且互余,求直线和面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四面体中,棱所在直线所成角为,且,面和面所成的锐二面角为,面和面所成的锐二面角为,当四面体的体积取得最大值时( .

A.B.C.D.不能确定

查看答案和解析>>

科目: 来源: 题型:

【题目】函数.

1)讨论函数的单调性;

2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线的焦点为是抛物线的准线与轴的交点,直线经过焦点且与抛物线相交于两点,直线分别交轴于两点,记的面积分别为.

1)求证:

2)若恒成立,求实数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥中,底面是矩形,.

1)求证:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,则的坐标为_____________,直线与椭圆交于两点,且的重心恰为点,则直线斜率为_____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2),若函数的图象有且仅有一个交点,的值(其中表示不超过的最大整数,.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于点EAA1AD2AB4.

1)证明:AE⊥平面ECD

2)求点C1到平面AEC的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】年,某省将实施新高考,年秋季入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中语文、数学、外语三科为必考科目,满分各分,另外,考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每科目满分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取n名学生进行调查.

1)已知抽取的n名学生中含女生人,求n的值及抽取到的男生人数;

2)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下面表格是根据调查结果得到的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“历史”

总计

男生

10

女生

30

总计

3)在抽取到的名女生中,在(2)的条件下,按选择的科目进行分层抽样,抽出名女生,了解女生对“历史”的选课意向情况,在这名女生中再抽取人,求这人中选择“历史”的人数为人的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

同步练习册答案