相关习题
 0  265499  265507  265513  265517  265523  265525  265529  265535  265537  265543  265549  265553  265555  265559  265565  265567  265573  265577  265579  265583  265585  265589  265591  265593  265594  265595  265597  265598  265599  265601  265603  265607  265609  265613  265615  265619  265625  265627  265633  265637  265639  265643  265649  265655  265657  265663  265667  265669  265675  265679  265685  265693  266669 

科目: 来源: 题型:

【题目】设椭圆的离心率与双曲线的离心率互为倒数,且内切于圆.

(1)求椭圆M的方程;

(2)已知R是椭圆M上的一动点,从原点O引圆R:的两条切线,分别交椭圆MPQ两点,直线OP与直线OQ的斜率分别为,试探究是否为定值并证明你所探究出的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数在点处的切线方程;

(2)存在极小值点与极大值点,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】若定义在R上的函数,其图像是连续不断的,且存在常数使得对任意实数x都成立,则称是一个“k~特征函数”.则下列结论中正确命题序号为____________.

是一个“k~特征函数”;不是“k~特征函数”;

是常数函数中唯一的“k~特征函数”;④“~特征函数”至少有一个零点;

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数和中位数的值精确到0.01);

(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为的学生中抽取9名参加座谈会.

(i)你认为9个名额应该怎么分配?并说明理由;

(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

附:).

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中, 分别为的中点, .

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学用“随机模拟方法”计算曲线与直线所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1e]上的均匀随机数xi10个在区间[01]上的均匀随机数,其数据如下表的前两行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得这个曲边三角形面积的一个近似值为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四棱锥的底面是梯形,且平面中点,

(1)求证:

(2)若,求三棱锥的高.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某媒体为调查喜爱娱乐节目是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:

(1)根据该等高条形图,完成下列列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众性别有关?

(2)从性观众中按喜欢节目与否,用分层抽样的方法抽取5名做进一步调查.从这5名中任选2名,求恰有1名喜欢节目和1名不喜欢节目的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案