科目: 来源: 题型:
【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦
尺,弓形高
寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
![]()
注:l丈=10尺=100寸,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)若椭圆
的焦点在
轴上,点
为坐标原点,射线
、
分别与椭圆
交于点
、点
,且
,试判断直线
与圆
:
的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦
尺,弓形高
寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
![]()
注:l丈=10尺=100寸,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】设n为正整数,集合A=
.对于集合A中的任意元素
和
,记
M(
)=
.
(Ⅰ)当n=3时,若
,
,求M(
)和M(
)的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素
,当
相同时,M(
)是奇数;当
不同时,M(
)是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素
,
M(
)=0.写出一个集合B,使其元素个数最多,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
,定义
为数列
的一阶差分数列,其中
.
(1)若
,试断
是否是等差数列,并说明理由;
(2)若
证明
是等差数列,并求数列
的通项公式;
(3)对(2)中的数列
,是否存在等差数列
,使得
对一切
都成立,若存在,求出数列
的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:
=2px经过点
(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,
,
,求证:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
![]()
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:
当且仅当“
”或“
”且“
”.按上述定义的关系“>”,给出以下四个命题:
①若
,则
;
②若
,则
;
③若
,则对于任意
;
④对于复数
,若
,则
.
其中所有真命题的序号为______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
分组 |
|
|
|
|
|
频数 | 9 | 23 | 40 | 22 | 6 |
规定:实心球投掷距离在
之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)求
,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在
内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com