科目: 来源: 题型:
【题目】在复平面内,给出以下四个说法:
①实轴上的点表示的数均为实数;
②虚轴上的点表示的数均为纯虚数;
③互为共轭复数的两个复数的实部相等,虚部互为相反数;
④已知复数
满足
,则
在复平面内所对应的点位于第四象限.
其中说法正确的个数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知极点与坐标原点
重合,极轴与
轴非负半轴重合,
是曲线
上任一点
满足
,设点
的轨迹为
.
(1)求曲线
的平面直角坐标方程;
(2)将曲线
向右平移
个单位后得到曲线
,设曲线
与直线
(
为参数)相交于
、
两点,记点
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
的一个顶点与抛物线
的焦点重合,
、
分别是椭圆
的左、右焦点,其离心率
椭圆
右焦点
的直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市房管局为了了解该市市民
年
月至
年
月期间买二手房情况,首先随机抽样其中
名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图
所示的频率分布直方图,接着调查了该市
年
月至
年
月期间当月在售二手房均价
(单位:万元/平方米),制成了如图
所示的散点图(图中月份代码
分别对应
年
月至
年
月).
![]()
(1)试估计该市市民的购房面积的中位数
;
(2)现采用分层抽样的方法从购房面积位于
的
位市民中随机抽取
人,再从这
人中随机抽取
人,求这
人的购房面积恰好有一人在
的概率;
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值如下表所示:
|
| |
| 0.000591 | 0.000164 |
| 0.006050 | |
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出
年
月份的二手房购房均价(精确到
)
(参考数据)
,
,
,
,
,
,![]()
(参考公式)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设
为数列
前
项的和,![]()
,数列
的通项公式![]()
.
(1)求数列
的通项公式;
(2)若
,则称
为数列
与
的公共项,将数列
与
的公共项,按它们在原数列中的先后顺序排成一个新数列
,求
的值;
(3)是否存在正整数
、
、![]()
使得
成立,若存在,求出
、
、
;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减;②存在常数
,使其值域为
,则称函数
为
的“渐近函数”.
(1)设
,若
在
上有解,求实数
取值范围;
(2)证明:函数
是函数
,
的渐近函数,并求此时实数
的值;
(3)若函数
,
,
,证明:当
时,
不是
的渐近函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在Rt△ABC中,
,
,
,它的内接正方形DEFG的一边EF在斜边BA上,D、G分别在边BC、CA上,设△ABC的面积为
,正方形DEFG的面积为
.
![]()
(1)试用
、
分别表示
和
;
(2)设
,求
的最大值,并求出此时的
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com