科目: 来源: 题型:
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:
得分 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
“的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
|
|
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;②若
,则
,
,
,
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,等腰梯形
中,
,
,
,
为
中点,
与
交于点
,将
沿
折起,使点
到达点
的位置(
平面
).
![]()
(1)证明:平面
平面
;
(2)若
,试判断线段
上是否存在一点
(不含端点),使得直线
与平面
所成角的正弦值为
,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知无穷数列
的各项都是正数,其前
项和为
,且满足:
,
,其中
,常数![]()
.
(1)求证:
是一个定值;
(2)若数列
是一个周期数列(存在正整数
,使得对任意
,都有
成立,则称
为周期数列,
为它的一个周期),求该数列的最小周期;
(3)若数列
是各项均为有理数的等差数列,
(
),问:数列
中的所有项是否都是数列
中的项?若是,请说明理由;若不是,请举出反例.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)若
,
,求
的值域;
(2)当
时,求
的最小值
;
(3)是否存在实数
、
,同时满足下列条件:①
;② 当
的定义域为
时,其值域为
.若存在,求出
、
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地要建造一个边长为2(单位:
)的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过边
上一点
在区域
内作一次函数
(
)的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.
![]()
(1)求证:
;
(2)设点
的横坐标为
,
①用
表示
、
两点的坐标;
②将四边形
的面积
表示成关于
的函数
,并求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com