科目: 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | ||||||
频数 | ||||||
支持“生二胎” |
(1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;
年龄不低于岁的人数 | 年龄低于岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线、与平面、满足,,,则下列命题中正确的是( )
A.是的充分不必要条件
B.是的充要条件
C.设,则是的必要不充分条件
D.设,则是的既不充分也不必要条件
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、.经过点且倾斜角为的直线与椭圆交于、两点(其中点在轴上方),的周长为8.
(1)求椭圆的标准方程;
(2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与负半轴和轴所确定的半平面互相垂直.
①若,求异面直线和所成角的大小;
②若折叠后的周长为,求的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列满足,其中.
(1)若数列前四项,,,依次成等差数列,求,的值;
(2)若,且数列为等比数列,求的值;
(3)若,且是数列的最小项,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数的对称性有如下结论:对于给定的函数,如果对于任意的都有成立为常数),则函数关于点对称.
(1)用题设中的结论证明:函数关于点;
(2)若函数既关于点对称,又关于点对称,且当时,,求:①的值;
②当时,的表达式.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数,若存在实数,使得为上的奇函数,则称是位差值为的“位差奇函数”.
(1)判断函数和是否为位差奇函数?说明理由;
(2)若是位差值为的位差奇函数,求的值;
(3)若对任意属于区间中的都不是位差奇函数,求实数、满足的条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费(元) | 14.82 | 14.49 | |
平均每单里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点、、、(),都在函数(,)的图像上;
(1)若数列是等差数列,求证:数列是等比数列;
(2)设,函数的反函数为,若函数与函数的图像有公共点,求证:在直线上;
(3)设,(),过点、的直线与两坐标轴围成的三角形面积为,问:数列是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M点为圆心,4为半径.
求直线l和圆C的极坐标方程;
直线l与x轴y轴分别交于A,B两点,Q为圆C上一动点,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com