科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照![]()
![]()
![]()
![]()
![]()
共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 |
|
|
|
|
|
|
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 |
|
|
|
|
|
|
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面
列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 | |
男生 | |||
女生 | |||
总计 |
参考公式:
,其中
.
参考数据:
| 0.40 | 0.25 | 0.10 | 0.010 |
| 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】设满足以下两个条件的有穷数列
为
阶“期待数列”:①
;②
.
(1)若等比数列
为
阶“期待数列”
,求公比
;
(2)若一个等差数列
既是
阶“期待数列”又是递增数列
,求该数列的通项公式;
(3)记
阶“期待数列”
的前
项和为
,求证;数列
不能为
阶“期待数列”.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:直线关于圆的圆心距单位
圆心到直线的距离与圆的半径之比.
(1)设圆
,求过点
的直线关于圆
的圆心距单位
的直线方程.
(2)若圆
与
轴相切于点
,且直线
关于圆
的圆心距单位
,求此圆
的方程.
(3)是否存在点
,使过点
的任意两条互相垂直的直线分别关于相应两圆
与
的圆心距单位始终相等?若存在,求出相应的
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线
是以点
为圆心的圆的一部分,其中![]()
,
是圆的切线,且
,曲线
是抛物线![]()
的一部分,
,且
恰好等于圆
的半径.
![]()
(1)若
米,
米,求
与
的值;
(2)若体育馆侧面的最大宽度
不超过75米,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)求函数
在
上的单调递增区间;
(2)将函数
的图象向左平移
个单位长度,再将图象上所有点的横坐标伸长到原来的
倍(纵坐标不变),得到函数
的图象.求证:存在无穷多个互不相同的整数
,使得
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线![]()
为公海与领海的分界线,一艘巡逻艇在原点
处发现了北偏东
海面上
处有一艘走私船,走私船正向停泊在公海上接应的走私海轮
航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若
与公海的最近距离20海里,要保证在领海内捕获走私船,则
,
之间的最远距离是多少海里?
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
的前n项![]()
组成集合
,从集合
中任取
个数,其所有可能的k个数的乘积的和为
(若只取一个数,规定乘积为此数本身),例如:对于数列
,当
时,![]()
![]()
时,![]()
![]()
;
(1)若集合
,求当
时,![]()
![]()
的值;
(2)若集合
,证明:
时集合
的
与
时集合
的
(为了以示区别,用
表示)有关系式
,其中![]()
;
(3)对于(2)中集合
.定义
,求
(用n表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com