科目: 来源: 题型:
【题目】已知椭圆E的长轴长与焦距比为2:1,左焦点F(﹣2,0),一定点为P(﹣8,0).
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6;
(3)已知数列{an}为“r关联数列”,且a1=﹣10,是否存在正整数k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点![]()
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某沿海城市的海边有两条相互垂直的直线型公路l1、l2,海岸边界MPN近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB,且直线AB与曲线MPN有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段MPN是函数
图象的一段,点M到l1、l2的距离分别为8千米和1千米,点N到l2的距离为10千米,以l1、l2分别为x、y轴建立如图所示的平面直角坐标系xOy,设点P的横坐标为p.
![]()
(1)求曲线段MPN的函数关系式,并指出其定义域;
(2)若某人从点O沿公路至点P观景,要使得沿折线OAP比沿折线OBP的路程更近,求p的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果实系数
、
、
和
、
、
都是非零常数.
(1)设不等式
和
的解集分别是
、
,试问
是
的什么条件?并说明理由.
(2)在实数集中,方程
和
的解集分别为
和
,试问
是
的什么条件?并说明理由.
(3)在复数集中,方程
和
的解集分别为
和
,证明:
是
的充要条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】某甲
篮球队的12名队员(含2名外援)中有5名主力队员(含一名外援),主教练要从12名队员中选5人首发上场,则主力队员不少于4人,且有一名外援上场的概率是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型
:以
表示第
个时刻进入园区的人数;以
表示第
个时刻离开园区的人数.设定以
分钟为一个计算单位,上午
点
分作为第
个计算人数单位,即
;
点
分作为第
个计算单位,即
;依次类推,把一天内从上午
点到晚上
点
分分成
个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天
点至
点这一小时内,进入园区的游客人数
、离开园区的游客人数
各为多少?
(2)假设当日园区游客总人数达到或超过
万时,园区将采取限流措施.该单位借助该数学模型知晓当天
点(即
)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,数列
、
满足:
,
,记
.
(1)若
,
,求数列
、
的通项公式;
(2)证明:数列
是等差数列;
(3)定义
,证明:若存在
,使得
、
为整数,且
有两个整数零点,则必有无穷多个
有两个整数零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com