科目: 来源: 题型:
【题目】超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(
)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:
(1)逐份检验,则需要检验n次;
(2)混合检验,将其中k(
且
)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为
次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(
).
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;
(2)现取其中k(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(i)试运用概率统计的知识,若
,试求p关于k的函数关系式
;
(ii)若
,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.
参考数据:
,
,
,
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,
,底面四边形
为直角梯形,
,
,
为线段
上一点.
![]()
(1)若
,则在线段
上是否存在点
,使得
平面
?若存在,请确定
点的位置;若不存在,请说明理由
(2)己知
,若异面直线
与
成
角,二而角
的余弦值为
,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,其中
、
是非空数集,且
,设
,
;
(1)若
,
,求
;
(2)是否存在实数
,使得
,且
?若存在,请求出满足条件的实数
;若不存在,请说明理由;
(3)若
,且
,
,
是单调递增函数,求集合
、
;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
的定义域为
,其中
为常数;
(1)若
,且
是奇函数,求
的值;
(2)若
,
,函数
的最小值是
,求
的最大值;
(3)若
,在
上存在
个点![]()
,满足
,
,
,使
,求实数
的取值范围;
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产某产品的年固定成本为250万元,每生产
千件,需另投入成本
(万元),若年产量不足
千件,
的图像是如图的抛物线,此时
的解集为
,且
的最小值是
,若年产量不小于
千件,
,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点M,N分别是椭圆C:
(
)的左顶点和上顶点,F为其右焦点,
,椭圆的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不过原点O的直线
与椭圆C相交于A,B两点,若直线OA,AB,OB的斜率成等比数列,求
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com