科目: 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)设点
,
为曲线
上的动点,求
的面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,其中
为非零实数.
(1)求
的极值;
(2)当
时,在函数
的图象上任取两个不同的点
、
.若当
时,总有不等式
成立,求正实数
的取值范围:
(3)当
时,设
、
,证明:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某人沿固定路线开车上班,沿途共有
个红绿灯,他对过去
个工作日上班途中的路况进行了统计,得到了如表的数据:
上班路上遇见的红灯数 |
|
|
|
|
|
|
天数 |
|
|
|
|
|
|
若一路绿灯,则他从家到达公司只需用时
分钟,每遇一个红灯,则会多耗时
分钟,以频率作为概率的估计值
(1)试估计他平均每天上班需要用时多少分钟?
(2)若想以不少于
的概率在早上
点前(含
点)到达公司,他最晚何时要离家去公司?
(3)公司规定,员工应早上
点(含
点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款
元.因某些客观原因,在接下来的
个工作日里,他每天早上只能
从家出发去公司,求他因迟到而被罚款的期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点为
,点
是抛物线
上一点,且满足
.
(1)求
、
的值;
(2)设
、
是抛物线
上不与
重合的两个动点,记直线
、
与
的准线的交点分别为
、
,若
,问直线
是否过定点?若是,则求出该定点坐标,否则请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法错误的是( )
A.“
”是“
”的充分不必要条件
B.若
为假命题,则
,
均为真命题
C.命题“若
,则
”的逆否命题是“若
,则
|”
D.若命题
,使得
,则
,恒有![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某地在国庆节
天假期中的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这
天的认购量与成交量作出如下判断:①成交量的中位数为
;②认购量与日期正相关;③日成交量超过日平均成交量的有
天,则上述判断中正确的个数为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为
射线
交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面上动点
到点
距离比它到直线
距离少1.
(1)求动点
的轨迹方程;
(2)记动点
的轨迹为曲线
,过点
作直线
与曲线
交于
两点,点
,延长
,
,与曲线
交于
,
两点,若直线
,
的斜率分别为
,
,试探究
是否为定值?若为定值,请求出定值,若不为定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(1)求这1000件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中以
近似为样本平均数
,
近似为样本方差
.
(ⅰ)利用该正态分布,求
;
(ⅱ)某用户从该工厂购买了100件这种产品,记
表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求
.
附:
.若
,则
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com