科目: 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
![]()
A.256B.350C.162D.96
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
,Q为l上的动点,以OQ为边作等边三角形OPQ,且三点O,P,Q按逆时针方向排列.
(Ⅰ)设点P运动轨迹E的直角坐标方程;
(Ⅱ)若曲线
经过伸缩变换
得到曲线
,若点M为曲线
上的动点,且点M到曲线E的最小距离为1,求实数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(Ⅰ)若函数
,求函数
的单调区间;
(Ⅱ)设直线l为函数
的图象上一点
处的切线,证明:在区间
上存在唯一的
,使得直线l与曲线
相切并求出此时n的值.(参考数据:
)
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,+∞) |
顾客人数 | m | 20 | 30 | n | 10 |
统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(1)试确定
的值,并估计该商场每日应准备纪念品的数量;
(2)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物
款小于200元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元) | [0,50) | [50,100) | [100,150) | [150,200) |
返利百分比 | 0 | 6% | 8% | 10% |
估计该商场日均让利多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分13分)
如图,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
![]()
(1)证明:动点
在定直线上;
(2)作
的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】将函数
的图象向右平移
个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
.
(1)若
在点
处的切线与直线
垂直,求函数
在
点处的切线方程;
(2)若对于
,
恒成立,求正实数
的取值范围;
(3)设函数
,且函数
有极大值点
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com