科目: 来源: 题型:
【题目】已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
![]()
求椭圆
和抛物线
的方程;
设点P为抛物线
准线上的任意一点,过点P作抛物线
的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为
,
,求证:
为定值;
若直线AB交椭圆
于C,D两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
:
的焦点
为圆
的圆心.
(1)求抛物线
的标准方程;
(2)若斜率
的直线
过抛物线的焦点
与抛物线相交于
两点,求弦长
.
【答案】(1)
;(2)8.
【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长
.
试题解析:(1)圆的标准方程为
,圆心坐标为
,
即焦点坐标为
,得到抛物线
的方程: ![]()
(2)直线
:
,联立
,得到![]()
弦长
![]()
【题型】解答题
【结束】
19
【题目】已知函数
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)求函数
的单调区间和极值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点曲线
的一个焦点,
为坐标原点,点
为抛物线
上任意一点,过点
作
轴的平行线交抛物线的准线于
,直线
交抛物线于点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)求证:直线
过定点
,并求出此定点的坐标.
【答案】(I)
;(II)证明见解析.
【解析】试题分析:(Ⅰ)将曲线
化为标准方程,可求得
的焦点坐标分别为
,可得
,所以
,即抛物线的方程为
;(Ⅱ)结合(Ⅰ),可设
,得
,从而直线
的方程为
,联立直线与抛物线方程得
,解得
,直线
的方程为
,整理得
的方程为
,此时直线恒过定点
.
试题解析:(Ⅰ)由曲线
,化为标准方程可得
, 所以曲线
是焦点在
轴上的双曲线,其中
,故
,
的焦点坐标分别为
,因为抛物线的焦点坐标为
,由题意知
,所以
,即抛物线的方程为
.
(Ⅱ)由(Ⅰ)知抛物线
的准线方程为
,设
,显然
.故
,从而直线
的方程为
,联立直线与抛物线方程得
,解得![]()
①当
,即
时,直线
的方程为
,
②当
,即
时,直线
的方程为
,整理得
的方程为
,此时直线恒过定点
,
也在直线
的方程为
上,故直线
的方程恒过定点
.
【题型】解答题
【结束】
21
【题目】已知函数
, ![]()
(Ⅰ)当
时,求函数
的单调递减区间;
(Ⅱ)若
时,关于
的不等式
恒成立,求实数
的取值范围;
(Ⅲ)若数列
满足
,
,记
的前
项和为
,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】衡阳市八中对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次.若某志愿者考核为合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为
、
、
,他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】在
中,
,
分别为
,
的中点,
,如图1.以
为折痕将
折起,使点
到达点
的位置,如图2.
![]()
![]()
如图1 如图2
(1)证明:平面
平面
;
(2)若平面
平面
,求直线
与平面
所成角的正弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com