精英家教网 > 高中物理 > 题目详情
5.中国月球探测卫星“嫦娥号”简化后的路线示意图如图所示,卫星由地面发射后,先经过地面发射轨道进入地球附近的停泊轨道做匀速圆周运动;然后从停泊轨道经过调控进入地月转移轨道;到达月球附近时,再次调控进入工作轨道做匀速圆周运动,这时卫星将开始对月球进行探测.已知地球与月球的质量之比为a,卫星的停泊轨道与工作轨道的轨道半径之比为b.则下列说法中正确的是(  )
A.卫星从停泊轨道调控进入到地月转移轨道的过程中,卫星的机械能不守恒
B.卫星在停泊轨道运行的速度可能大于地球的第一宇宙速度
C.卫星在停泊轨道和工作轨道运行的线速度大小之比为$\sqrt{b}$:$\sqrt{a}$
D.卫星在停泊轨道和工作轨道运行的周期之比为b$\sqrt{b}$:$\sqrt{a}$

分析 第一宇宙速度是近地卫星的环绕速度,也是发射人造卫星的最小速度.根据万有引力提供向心力,列出等式表示出所要比较的物理量,再根据题目中已知条件进行比较.知道卫星从发射后到进人工作轨道过程中,需要不断点火,反冲力做功.

解答 解:A、卫星从停泊轨道进入地月转移轨道的过程中,需点火加速,卫星的机械能不守恒,故A正确.
B、第一宇宙速度是绕地球做圆周运动的最大环绕速度,由于停泊轨道的半径大于地球的半径,则卫星在停泊轨道上的速度小于第一宇宙速度,故B错误.
C、根据$G\frac{Mm}{{r}^{2}}=m\frac{{v}^{2}}{r}=mr\frac{4{π}^{2}}{{T}^{2}}$得,v=$\sqrt{\frac{GM}{r}}$,T=$\sqrt{\frac{4{π}^{2}{r}^{3}}{GM}}$,则卫星在停泊轨道和工作轨道运行的线速度大小之比为$\sqrt{a}:\sqrt{b}$,周期之比为$\sqrt{{b}^{3}}:\sqrt{a}$,故D正确,C错误.
故选:AD.

点评 本题是卫星问题,关键抓住万有引力等于向心力这一基本思路列式分析.其中,向心力的公式的选取要根据题目提供的已知物理量或所求解的物理量灵活选择.要比较一个物理量大小,我们应该把这个物理量先表示出来,在进行比较.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

7.小球以初速度v0正对着倾角为θ的斜面水平抛出,小球恰好垂直撞上斜面.
求:(1)小球撞上斜面时速度与水平面的夹角;
(2)小球在空中运动的时间和小球撞上斜面的速度大小;
(3)小球撞上斜面时的下落竖直高度和水平位移;
(4)小球撞上斜面的位移大小和方向.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.物理学在不断创新、发展和前进.如十九世纪中叶,麦克斯韦(填科学家人名)建立了电磁场理论,并预言了以光速传播的电磁波的存在.再如1905年爱因斯坦提出了相对论,此理论是关于时空和引力的理论,提出了存在一种跟电磁波一样波动的引力波,2016年科学家们宣布已经探测到引力波的存在.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.如图所示是一个质点做变速直线运动的位移-时间(s-t)图象中的一段,关于该质点的运动以下说法正确的有(  )
A.质点在第3.5s末的速度等于4m/sB.第4s内的平均速度等于4m/s
C.第4s内的平均速度小于4m/sD.第4s末的加速度大于2m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

20.如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m,带电量为q,小球可在棒上滑动,小球与棒的动摩擦因数为μ.现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场中,设小球电量不变,电场强度为E,方向水平向右,磁感应强度为B,方向垂直纸面向外,小球沿棒由静止开始下滑,则(  )
A.小球先匀加速运动,后匀速运动B.小球加速度先增大,后减小
C.小球下落的最大加速度是gD.小球下落的最大速度是$\frac{mg}{qBμ}+\frac{E}{B}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.对磁现象的研究中有一种“磁荷观点”.人们假定,在N极上聚集着正磁荷,在S极上聚集着负磁荷.由此可以将磁现象与电现象类比,得出一系列相似的定律,引入相似的概念.例如磁的库仑定律 、磁场强度、磁偶极矩等.在磁荷观点中磁场强度定义为:其大小等于点磁荷在该处所受磁场力与点磁荷所带磁荷量的比值,其方向与正磁荷在该处所受磁场力方向相同.则一个磁荷量为6Nm/A(磁荷量的单位是“牛米每安”)的磁荷在磁场强度为3A/m(磁场强度的单位是“安每米”)的磁场中受到的磁场力为(  )
A.18NB.0.5NC.2ND.3N

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后变轨,使其沿椭圆轨道2运行,最后再次变轨,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示.设卫星在轨道1上运行时,速度为v1,卫星在轨道2上运行时,经过Q点的速度为v2,经过P点的速度为v3,卫星在轨道3上运行时,速度为v4,则这四个速度的大小关系是(  )
A.v1>v2>v3>v4B.v1=v2>v3=v4C.v2>v1>v4>v3D.v2>v1>v3>v4

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.套圈游戏是一很受欢迎的群众活动,要求每次从同一位置水平抛出圆环,套住与抛出时距圆环前端水平距离2.8m处高为10cm竖直放置的细杆,即为获胜.若圆环的半径为10cm,有一名群众在高度为135cm处水平抛出圆环,要想套住细杆,抛出的初速度可能为:(g取10m/s2)(  )
A.5.5m/sB.5.7m/sC.5.9 m/sD.6.1m/s

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示,在平面直角坐标系中,第一象限中有一半径为a的圆形匀强磁场区域,磁场方向垂直纸面向外,边界与两个坐标轴相切,A、B是两个阀门(控制粒子的进出),通常情况下处于关闭状态,其连线与X轴平行,B恰好位于Y轴上,坐标为(0,$a+\frac{\sqrt{2}}{2}a$)两阀门间距为d,有一粒子源发射具有沿AB方向各种速度的同一种带正电粒子(粒子所受重力不计),某时刻阀门A开启,$\frac{t}{2}$后A关闭,又过t后B开启,再过$\frac{t}{2}$后B也关闭.由两阀门通过的粒子垂直进入第一象限的圆形磁场中,其中速度最大的粒子离开磁场后,恰好能垂直通过X轴.不考虑粒子间的相互作用,求,
(1)穿过A和B进入磁场的粒子的最大速度和最小速度
(2)最后离开磁场的粒子通过Y轴的坐标
(3)从第一个粒子进入磁场到最后一个粒子离开磁场经历的总时间.

查看答案和解析>>

同步练习册答案