精英家教网 > 试题搜索列表 >已知双曲线 的离心率为e1 的离心率为e2

已知双曲线 的离心率为e1 的离心率为e2答案解析

科目:gzsx 来源: 题型:

已知双曲线的离心率e1,抛物线的离心率e,椭圆
x2
25
+
y2
9
=1
的离心率e2,若e1、e、e2成等比数列,则双曲线的渐近线方程为(  )
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
3
4
x或y=±
4
3
x
D、y=±
4
5
x或y=±
3
5
x

查看答案和解析>>

科目:gzsx 来源:2012年天津市河西区高考数学一模试卷(理科)(解析版) 题型:选择题

已知椭圆+=1的离心率为e1,双曲线-=1的离心率为e2,抛物线y2=2px的离心率为e3,a=5,b=(,c=5,则a,b,c之间的大小关系是( )
A.a>c>b
B.a>b>c
C.c>b>a
D.b>c>a

查看答案和解析>>

科目:gzsx 来源:2005-2006学年江苏省苏州市吴中区高二(上)期末数学试卷(解析版) 题型:选择题

已知椭圆(a>b>0)的离心率为e1,准线为l1、l2;双曲线离心率为e2,准线为l3、l4;若l1、l2、l3、l4正好围成一个正方形,则等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:gzsx 来源: 题型:

如下图,已知双曲线C1的方程为=1(a>0,b>0),A、B为其左、右两个顶点,P是双曲线C1上的任意一点,引QB⊥PB,QA⊥PA,AQ与BQ交于点Q.

(1)求Q点的轨迹方程;

(2)设(1)中所求轨迹为C2,C1、C2的离心率分别为e1、e2,当e1时,求e2的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知双曲线与椭圆
x2
4
+y2=1
共焦点,它们的离心率之和为
3
3
2

(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线l:y=
1
2
x+m
与椭圆有两个交点,求m的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知双曲线方程C:
x2
a2
-
y2
b2
=1(b>a>0)的离心率为e1,其实轴与虚轴的四个顶点和椭圆的四个顶点重合,椭圆G的离心率为e2,一定有(  )

查看答案和解析>>

科目:gzsx 来源:江苏同步题 题型:解答题

已知双曲线C1与椭圆C2有公共的焦点,并且双曲线的离心率e1与椭圆的离心率e2之比为,求双曲线C1的方程.

查看答案和解析>>

科目:gzsx 来源:2012-2013学年福建省三明九中高二(上)第二次月考数学试卷(美术班)(解析版) 题型:填空题

已知双曲线与椭圆共焦点,它们的离心率之和为
(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线与椭圆有两个交点,求m的取值范围.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知双曲线与椭圆
x2
4
+y2=1
共焦点,它们的离心率之和为
3
3
2

(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线l:y=
1
2
x+m
与椭圆有两个交点,求m的取值范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的离心率为e1
x2
a2
-
y2
b2
=-1的离心率为e2
(1)求证:
1
e12
+
1
e22
=1;      
(2)求e1+e2的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:选择题

6.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线C2:$\frac{{y}^{2}}{{b}^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,则关于双曲线C1与C2的命题.
①渐近线相同;
②焦点相同;
③离心率e1,e2满足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④两个双曲线焦点在同一圆上,
其中所有正确的命题序号为(  )
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:gzsx 来源: 题型:

(1)已知双曲线C1与椭圆C2
x2
36
+
y2
49
=1
有公共的焦点,并且双曲线的离心率e1与椭圆的离心率e2之比为
7
3
,求双曲线C1的方程.
(2)以抛物线y2=8x上的点M与定点A(6,0)为端点的线段MA的中点为P,求P点的轨迹方程.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

(1)已知双曲线C1与椭圆C2
x2
36
+
y2
49
=1
有公共的焦点,并且双曲线的离心率e1与椭圆的离心率e2之比为
7
3
,求双曲线C1的方程.
(2)以抛物线y2=8x上的点M与定点A(6,0)为端点的线段MA的中点为P,求P点的轨迹方程.

查看答案和解析>>

科目:gzsx 来源:课标综合版 专题复习 题型:

如图,O为坐标原点,椭圆C1=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2,且|F2F4|=-1

(Ⅰ)求C1,C2的方程;

(Ⅱ)过F1作C1的不垂直于y轴的弦AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

如图,O为坐标原点,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2
x2
a2
-
y2
b2
=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=
3
2
,且|F2F4|=
3
-1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知共焦点的椭圆和双曲线,焦点为F1,F2,记它们其中的一个交点为P,且∠F1PF2=120°,则该椭圆离心率e1与双曲线离心率e2必定满足的关系式为(  )
A、
1
4
e1+
3
4
e2
=1
B、
3
4
e12 +
1
4
e22
=1
C、
3
4e12
+
1
4e22
=1
D、
1
4e12
+
3
4e22
 =1

查看答案和解析>>

科目:gzsx 来源: 题型:单选题

已知共焦点的椭圆和双曲线中心在原点,焦点F1、F2在x轴上,它们的一个交点为P,且∠F1PF2=1200,则该椭圆离心率e1与双曲线心率e2满足的关系式为


  1. A.
    数学公式=1
  2. B.
    数学公式=1
  3. C.
    数学公式=1
  4. D.
    数学公式

查看答案和解析>>

科目:gzsx 来源:2011年浙江省杭州市萧山区高考数学模拟试卷10(理科)(解析版) 题型:选择题

已知共焦点的椭圆和双曲线中心在原点,焦点F1、F2在x轴上,它们的一个交点为P,且∠F1PF2=120,则该椭圆离心率e1与双曲线心率e2满足的关系式为( )
A.=1
B.=1
C.=1
D.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知离心率分别为e1、e2的椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)和双曲线C2
x2
a2
-
y2
b2
=1的两个公共顶点为A、B,若P、Q分别为双曲线C2和椭圆C1上不同于A、B的动点,且满足
AP
+
BP
=λ(
AQ
+
BQ
)(λ∈R,|λ|>1).如果直线AP、BP、AQ、BQ的斜率依次记为k1、k2、k3、k4
(1)求证:e12+e22=2;
(2)求证:k1+k2+k3+k4=0;
(3)设F1、F2分别为椭圆C1和双曲线C2的右焦点,若PF2∥QF1,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知离心率分别为e1、e2的椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)和双曲线C2
x2
a2
-
y2
b2
=1的两个公共顶点为A、B,若P、Q分别为双曲线C2和椭圆C1上不同于A、B的动点,O为坐标原点,且满足
OP
OQ
(λ∈R,|λ|>1).如果直线AP、BP、AQ、BQ的斜率依次记为k1、k2、k3、k4
(1)求证:e12+e22=2;
(2)求证:k1+k2+k3+k4=0.

查看答案和解析>>