如图.已知抛物线y=-x2 mx 3与x轴交于A.B两点答案解析
科目:czsx
来源:
题型:
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交

于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,探索并判断四边形CDAN是怎样的四边形?并对你得到的结论予以证明;
(3)直线y=mx+2与抛物线交于T,Q两点.是否存在这样的实数m,使以线段TQ为直径的圆恰好过坐标原点?若存在,请求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:czsx
来源:四川省模拟题
题型:解答题
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,探索并判断四边形CDAN是怎样的四边形?并对你得到的结论予以证明;
(3)直线y=mx+2与抛物线交于T,Q两点,是否存在这样的实数m,使以线段TQ为直径的圆恰好过坐标原点,若存在,请求出m的值;若不存在,请说明理由。
查看答案和解析>>
科目:czsx
来源:2012年福建省漳州市中考数学模拟试卷(二)(解析版)
题型:解答题
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,探索并判断四边形CDAN是怎样的四边形?并对你得到的结论予以证明;
(3)直线y=mx+2与抛物线交于T,Q两点.是否存在这样的实数m,使以线段TQ为直径的圆恰好过坐标原点?若存在,请求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:czsx
来源:
题型:
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B。
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标。
查看答案和解析>>
科目:czsx
来源:2016届山东省滨州市中考一模数学试卷(解析版)
题型:解答题
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:czsx
来源:2016届广东省汕头市龙湖区九年级下学期中考数学模拟试卷(解析版)
题型:解答题
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.
查看答案和解析>>
科目:czsx
来源:2016届山东聊城莘县九年级下期第二次模拟测试数学试卷(解析版)
题型:解答题
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>
科目:czsx
来源:2016届山东德州陵城区九年级下期二模考试数学试卷(解析版)
题型:解答题
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>
科目:czsx
来源:2015-2016学年江苏省南通市海门市八年级(下)期末数学试卷(解析版)
题型:计算题
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:czsx
来源:2016-2017学年山东济宁兖州区九年级上期中数学试卷(解析版)
题型:解答题
如图,已知抛物线y=
+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

查看答案和解析>>
科目:czsx
来源:
题型:解答题
19.

如图,已知抛物线y=ax
2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.
查看答案和解析>>
科目:czsx
来源:
题型:解答题
12.

如图,已知抛物线y=ax
2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.
(3)在抛物线的对称轴上是否存在一点P,使△BPC为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:czsx
来源:
题型:

如图,已知直线l:y=kx+b(k,b为常数,且k≠0)与x轴,y轴分别交于点C,B两点.⊙A的圆心在x轴上,与x轴交于D,E两点,且与直线l相切于点B.作矩形OBGF,使得点G在⊙A上,F在x轴上.
(1)填空:用k,b表示点的坐标:C
;B
;A
;
(2)当矩形OBGF是正方形时,求k的值;
(3)在(2)的前提下,有一条抛物线y=ax
2+mx+c(a,m,c均为常数,其中a≠0),经过点D,E两点,且顶点H,在弓形BG内(包括边界
和弦BG),当
≤b≤5,请你求出a的范围.
查看答案和解析>>
科目:czsx
来源:
题型:解答题
19.如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax
2+bx+c(a≠0)的顶点为(-3,$\frac{25}{4}$),与x轴交于A,B两点(点A在点B的右侧)与y轴交于点C,D为BO的中点,直线DC解析式为y=kx+4(k≠0)
(1)求抛物线的解析式和直线CD的解析式.
(2)点P是抛物线第二象限部分上使得△PDC面积最大的一点,点E为DO的中点,F是线段DC上任意一点(不含端点).连接EF,一动点M从点E出发沿线段EF以每秒1个单位长度的速度运动到F点,再沿线段FC以每秒$\sqrt{2}$个单位长度的速度运动到C点停止.当点M在整个运动中同时最少为t秒时,求线段PF的长及t值.
(3)如图2,直线DN:y=mx+2(m≠0)经过点D,交y轴于点N,点R是已知抛物线上一动点,过点R作直线DN的垂线RH,垂足为H,直线RH交x轴与点Q,当∠DRH=∠ACO时,求点Q的坐标.
查看答案和解析>>