精英家教网 > 试题搜索列表 >若0小于x小于2则点m所在象限是

若0小于x小于2则点m所在象限是答案解析

科目:czsx 来源: 题型:


在数学活动课上,老师提出了一个问题,希望同学们进行探究.

在平面直角坐标系中,若一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象交于CD两点,则ADBC有怎样的数量关系?

同学们通过合作讨论,逐渐完成了对问题的探究.

小勇说:我们可以从特殊入手,取进行研究(如图①),此时我发现AD=BC

小攀说:在图①中,分别从点CD两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时 ,这一结论仍然成立,即_______的面积=_______的面积,此面积的值为____.

小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与ADBC都相等,这条线段是        

              

图①                                                                 图②

(1)请完成以上填空;

(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC

小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?

(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

科目:czsx 来源:2016届北京市朝阳区九年级上学期期末考试数学试卷(解析版) 题型:解答题

在数学活动课上,老师提出了一个问题,希望同学们进行探究.

在平面直角坐标系中,若一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象交于C、D两点,则AD和BC有怎样的数量关系?

同学们通过合作讨论,逐渐完成了对问题的探究.

小勇说:我们可以从特殊入手,取进行研究(如图①),此时我发现AD=BC.

小攀说:在图①中,分别从点C、D两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时 ,这一结论仍然成立,即_______的面积=_______的面积,此面积的值为____.

小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD和BC都相等,这条线段是

(1)请完成以上填空;

(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC;

小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?

(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

科目:czsx 来源:数学教研室 题型:044

如图所示,已知P(a ,b)是反比例函数y=的图象在第一象限内的分支上的点,直线ABx轴交于A,y轴交于B,OA=OB=1,PPMx轴于点M,PNy轴于N,分别交直线ABEF,EF两点在线段AB.

(1)写出EF两点的坐标(用含有a ,b的代数式表示);

(2)OEF的面积;

(3)P点在y=的图象上移动,EOF的大小是否变化,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

4.在数学活动课上,老师提出了一个问题,希望同学们进行探究.
在平面直角坐标系中,若一次函数y=kx+6的图象与x轴交于点A,与y轴交于点B,与反比例函数y=$\frac{6}{x}$的图象交于C、D两点,则AD和BC有怎样的数量关系?
同学们通过合作讨论,逐渐完成了对问题的探究.
小勇说:我们可以从特殊入手,取D进行研究(如图①),此时我发现AD=BC.
小攀说:在图①中,分别从点C、D两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时S矩形FCHO=S矩形GDIO,这一结论仍然成立,即四边形OHCF的面积=四边形OIDG的面积,此面积的值为6.
小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD和BC都相等,这条线段是GH.

(1)请完成以上填空;
(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC;
小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,AD=BC总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?
(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:czsx 来源:2013-2014学年北京市西城区中考一模数学试卷(解析版) 题型:解答题

定义1:在ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.

定义2:在平面内任取一个ABC和点P(点P不在ABC的三边所在直线上),称有序数组()为点P关于ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.

应用新知:

(1)如图4,正方形ABCD的边长为1,则 ,点D关于ABC的“面积坐标”是 ;探究发现:

(2)在平面直角坐标系中,点

若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为

试探究之间有怎样的数量关系,并说明理由;

若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);

解决问题:

(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

 

 

查看答案和解析>>

科目:czsx 来源: 题型:

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用
.
S
表示,例如图1中,
.
S △ABC
=S△ABC,图2中,
.
S △ABC
=-S△ABC
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组(
.
S △PBC
.
S △PCA
.
S △PAB
)为点P关于△ABC的“面积坐标”,记作
.
P
(
.
S △PBC
.
S △PCA
.
S △PAB
)
,例如图3中,菱形ABCD的边长为2,∠ABC=60°,则
.
S △ABC
=
3
,点D关于△ABC的“面积坐标”
.
D
(
.
S △DBC
.
S △DCA
.
S △DAB
)
.
D
(
3
,-
3
3
)

在图3中,我们知道S△ABC=S△DBC+S△DAB-S△DCA,利用“有向面积”,我们也可以把上式表示为:
.
S △ABC
=
.
S △DBC
+
.
S △DAB
+
.
S △DCA

应用新知:
(1)如图4,正方形ABCD的边长为1,则
.
S △ABC
=
 
,点D关于△ABC的“面积坐标”是
 

探究发现:
(2)在平面直角坐标系xOy中,点A(0,2),B(-1,0).
①若点P是第二象限内任意一点(不在直线AB上),设点P关于△ABO的“面积坐标”为
.
P
(m,n,k),试探究m+n+k与
.
S △ABO
之间有怎样的数量关系,并说明理由;
②若点P(x,y)是第四象限内任意一点,请直接写出点P关于△ABO的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点C(1,0),D(0,1),点Q在抛物线y=x2+2x+4上,求当S△QAB+S△QCD的值最小时,点Q的横坐标.

查看答案和解析>>

科目:czsx 来源: 题型:


  定义1:在中,若顶点按逆时针方向排列,则规定它的面积为“有向面积”;若顶点

按顺时针方向排列,则规定它的面积的相反数为的“有向面积”。“有向面积”用表示,

例如图1中,,图2中,

定义2:在平面内任取一个和点(点不在的三边所在直线上),称有序数组()为点关于的“面积坐标”,记作,例如图3中,菱形的边长为2,,则,点关于的“面积坐标”

在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:

应用新知:

(1)如图4,正方形的边长为1,则         ,点关于的“面积坐标”是       

探究发现:

(2)在平面直角坐标系中,点.

①若点是第二象限内任意一点(不在直线上),设点关于的“面积坐标”为

试探究之间有怎样的数量关系,并说明理由;

②若点是第四象限内任意一点,请直接写出点关于的“面积坐标”(用表示);

解决问题:

(3)在(2)的条件下,点,点在抛物线上,求当的值最小时,点的横坐标。

查看答案和解析>>

科目:czsx 来源:新教材完全解读 九年级数学 下册(配北师大版新课标) 北师大版新课标 题型:044

已知抛物线的顶点为D(0,),且经过点A(1,),如下图所示.

(1)求这条抛物线的解析式;

(2)点F是坐标原点O关于该抛物线顶点D的对称点,坐标为F(0,),我们可以用以下方法求线段FA的长度:过点A作AA1⊥x轴于A1,过点F作x轴的平行线,交AA1于点A2,则FA2=1,A2A=,在Rt△AFA2中,FA=.已知抛物线上另一点B的横坐标为2,求线段FB的长;

(3)若点P是该抛物线在第一象限内的任意一点,试探究线段FP的长度与点P纵坐标的大小关系,并证明你的猜想.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3
x
→y=3
x+2
+1;y=3
3x
→y=3
3x-1
+1;y=
3
x
→y=
3
x
+1;…
(1)若把函数y=
3
x+2
+1图象再往
 
平移
 
个单位,所得函数图象的解析式为y=
3
x-1
+1;
(2)分析下列关于函数y=
3
x-1
+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:
 
.(填序号)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3数学公式→y=3数学公式+1;y=3数学公式→y=3数学公式+1;y=数学公式→y=数学公式+1;…
(1)若把函数y=数学公式+1图象再往______平移______个单位,所得函数图象的解析式为y=数学公式+1;
(2)分析下列关于函数y=数学公式+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:______.(填序号)

查看答案和解析>>

科目:czsx 来源:2013年浙江省台州地区中考数学二模试卷(解析版) 题型:填空题

阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;y=→y=+1;…
(1)若把函数y=+1图象再往    平移    个单位,所得函数图象的解析式为y=+1;
(2)分析下列关于函数y=+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:    .(填序号)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

16.(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).
①小明发现:若点A坐标为(2,3),点B坐标为(2,-4),则AB的长度为7; 
②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m-n;
(2)如图2,正比例函数y=x与一次函数y=-x+6交于点A,点B是y=-x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P与y轴平行的直线l交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l恰好经过点C.
①求点A的坐标;
②求OC所在直线的关系式;
③求m关于t的函数关系式.

查看答案和解析>>

科目:czsx 来源: 题型:

一个不透明的袋中装有3个小球,分别标有数字-2、3、-4,这些小球除所有标数字不同外,其余完全相同,小明从中任意摸出一球,所标数字记为x,另有4张背面完全相同,正面分别标有数字3、-1、-4、5的卡片,小亮将其混合后,背面超上放置于桌面,并从中随机抽取一张,卡片上的数字记为y.
(1)若以x为横坐标,y为纵坐标,求点A(x,y)落在第二象限的概率(要求用列表法或树状图求解)
(2)小明和小亮做游戏,规则是若点A(x,y)落在第二象限,则小明赢:若A(x,y)落在第三象限,则小亮赢,你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:czsx 来源:活学巧练  九年级数学  下 题型:044

已知抛物线y=ax2+c的顶点为D(0,),且过点A(1,),如图所示.

(1)试求这条抛物线的代数表达式;

(2)点F是坐标原点O关于该抛物线顶点D的对称点,坐标为(0,),我们可以用以下方法求线段FA的长度:过点A作AA1⊥x轴,过F作x轴的平行线交AA1于点A2,则FA2=1,A2A=.在Rt△AFA2中,有FA=

已知抛物线上另一点B的横坐标为2,求线段FB的长.

(3)若点P是该抛物线上在第一象限内的任意一点,试探究线段FP的长度与点P的纵坐标的大小关系,并证明你的猜想.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

一个不透明的袋中装有3个小球,分别标有数字-2、3、-4,这些小球除所有标数字不同外,其余完全相同,小明从中任意摸出一球,所标数字记为x,另有4张背面完全相同,正面分别标有数字3、-1、-4、5的卡片,小亮将其混合后,背面超上放置于桌面,并从中随机抽取一张,卡片上的数字记为y.
(1)若以x为横坐标,y为纵坐标,求点A(x,y)落在第二象限的概率(要求用列表法或树状图求解)
(2)小明和小亮做游戏,规则是若点A(x,y)落在第二象限,则小明赢:若A(x,y)落在第三象限,则小亮赢,你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:czsx 来源:2010年辽宁省盘锦市中考数学试卷(解析版) 题型:解答题

一个不透明的袋中装有3个小球,分别标有数字-2、3、-4,这些小球除所有标数字不同外,其余完全相同,小明从中任意摸出一球,所标数字记为x,另有4张背面完全相同,正面分别标有数字3、-1、-4、5的卡片,小亮将其混合后,背面超上放置于桌面,并从中随机抽取一张,卡片上的数字记为y.
(1)若以x为横坐标,y为纵坐标,求点A(x,y)落在第二象限的概率(要求用列表法或树状图求解)
(2)小明和小亮做游戏,规则是若点A(x,y)落在第二象限,则小明赢:若A(x,y)落在第三象限,则小亮赢,你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:czsx 来源:2010年浙江省杭州市萧山区临浦片九年级(下)期初数学试卷(解析版) 题型:填空题

(2013•台州二模)阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;y=→y=+1;…
(1)若把函数y=+1图象再往    平移    个单位,所得函数图象的解析式为y=+1;
(2)分析下列关于函数y=+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:    .(填序号)

查看答案和解析>>

科目:czsx 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>