精英家教网 > 试题搜索列表 >已知曲线C1: x=cos? y=sin?

已知曲线C1: x=cos? y=sin?答案解析

科目:gzsx 来源: 题型:

已知曲线C1的参数方程为
x=2cosθ
y=sinθ
,曲线C2的极坐标方程为ρcos(θ-
π
4
)
=
2
.将曲线C1和C2化为普通方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=1+cosθ
y=sinθ
(θ为参数),曲线C2
x=2+t
y=-t
(t为参数),则C1与C2(  )
A、没有公共点
B、有一个公共点
C、有两个公共点
D、有两个以上的公共点

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=2+t
y=2t
(t为参数),曲线C2
x=1+cosθ
y=sinθ-1
(θ为参数),这两条曲线的公共点的个数是
 
 个.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=-4+cosα
y=3+sinα
,(α为参数),C2
x=8cosθ
y=3sinθ
,(θ为参数)
(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为α=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
,(t为参数)距离的最小值及此时Q点坐标.

查看答案和解析>>

科目:gzsx 来源:朝阳区二模 题型:单选题

已知曲线C1
x=1+cosθ
y=sinθ
(θ为参数),曲线C2
x=2+t
y=-t
(t为参数),则C1与C2(  )
A.没有公共点B.有一个公共点
C.有两个公共点D.有两个以上的公共点

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知曲线C1的参数方程为
x=2cosθ
y=sinθ
,曲线C2的极坐标方程为ρcos(θ-
π
4
)
=
2
.将曲线C1和C2化为普通方程.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1的参数方程为
x=-2+
10
cosθ
y=
10
sinθ
为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ,问曲线C1,C2是否相交,若相交请求出公共弦的方程,若不相交,请说明理由.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=1+cosθ
y=sinθ
(θ为参数),直线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数),在曲线C1求一点,使它到直线C2的距离最小,并求出该点的直角坐标和最小距离.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=cosθ
y=
3
6
sinθ
(θ为参数),C2
x=
2
2
+t•cosα
y=t•sinα
(t为参数).
(Ⅰ)将C1、C2的方程化为普通方程;
(Ⅱ)若C2与C1交于M、N,与x轴交于P,求|PM|•|PN|的最小值及相应α的值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1的参数方程为
x=
3
3
t
y=t-
3
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,设曲线C1,C2相交于两点A,B,则过AB中点且与直线AB垂直的直线的直角标方程为(  )
A、y=-
3
3
x+1+
3
3
B、y=
3
3
x+1+
3
3
C、y=-
3
3
x+1
D、y=
3
3
x+1

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=
1
2
cosα
y=3sinα
(α为参数),曲线C2:ρsin(θ+
π
4
)=
2
,将C1的横坐标伸长为原来的2倍,纵坐标缩短为原来的
1
3
得到曲线C3
(Ⅰ)求曲线C3的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若点P为曲线C3上的任意一点,Q为曲线C2上的任意一点,求线段|PQ|的最小值,并求此时的P的坐标.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=
2
cosθ
y=sinθ
(θ为参数)与曲线C2
x=t
y=kt-2
(t为参数)有且只有一个公共点,则实数k的取值范围为
 

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1的参数方程为
x=
2
cosθ
y=
2
sinθ
(θ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ-ρsinθ=0(ρ≥0,0≤θ<2π)
(Ⅰ)求曲线C1与C2交点的极坐标;
(Ⅱ)设曲线C1与C2的交点为A,B,线段AB上两点C,D,且|AC|=|BD|=
2
2
,P为曲线C1上的点,求|PC|+|PD|的最大值.

查看答案和解析>>

科目:gzsx 来源: 题型:

已知曲线C1
x=cosθ
y=sinθ
(θ为参数),曲线C2
x=
2
2
t
y=
2
2
t-
2
(t为参数)
(1)求C1,C2的普通方程,并指出它们是什么曲线.
(2)曲线C1,C2是否有公共点,为什么?

查看答案和解析>>

科目:gzsx 来源: 题型:

已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数),
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

9.已知曲线C1:$\left\{\begin{array}{l}{x=2+2\sqrt{3}cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$,(θ为参数),C2:ρ2-2ρcosθ-8=0,射线θ=$\frac{π}{3}$与曲线C1,C2分别交于A,B两点,求|AB|

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,曲线C2的极坐标方程ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(1)将曲线C1和C2化为普通方程;
(2)设C1和C2的交点分别为A,B,求线段AB的中垂线的参数方程.

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

19.已知曲线C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ为参数),曲线C2:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t-\sqrt{2}}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数).
(1)指出C1,C2各是什么曲线;
(2)求曲线C1与C2公共点M的坐标.

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

18.已知曲线C1的参数方程是$\left\{\begin{array}{l}x=cosφ\\ y=2sinφ\end{array}\right.$(φ为参数),以直角坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是$ρsinθ-2ρcosθ=4\sqrt{2}$.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上任意一点,Q为曲线C2上任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:gzsx 来源: 题型:解答题

16.已知曲线C1:x+$\sqrt{3}$y=$\sqrt{3}$和C2:$\left\{\begin{array}{l}{x=\sqrt{6}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.
(1)把曲线C1、C2的方程化为极坐标方程
(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.

查看答案和解析>>