精英家教网 > 试题搜索列表 >如图1所示,三角形ABC中,角ABC的角平分线

如图1所示,三角形ABC中,角ABC的角平分线答案解析

科目:czsx 来源: 题型:

如图,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为
 

(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设BP=x,记△MPQ的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

22、小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:
①取△ABC的边AB、AC的中点D、E,连接DE;
②过点A作AF⊥DE于点F;
(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的
正方形,那么原三角形的一边与这边上的高之间的数量关系是
1:2

(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.

查看答案和解析>>

科目:czsx 来源: 题型:

24、如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是
等底等高的三角形面积相等

规定;若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.根据此定义,在图1中易知直线为△ABC的等积直线.
(1)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M、N,请你判断直线l是否为该矩形的等积直线
(填“是”或“否”).在图2中再画出一条该矩形的等积直线.(不必写作法)
(2)如图3,在梯形ABCD中,直线l经过上下底AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线
(填“是”或“否”).
(3)在图3中,过M、N的中点O任作一条直线PQ分别交AD,BC于点P、Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

29、阅读探究题:数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>

科目:czsx 来源: 题型:

(1)如图1,经历矩形性质的探索过程,你可以发现:直角三角形斜边上的中线等于斜边上的一半.如在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB,你能用矩形的性质说明这个结论吗?
(2)利用上结论述解答下列问题:如图2所示,四边形ABCD中,∠A=90°,∠C=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系(提示:连接AE、CE)

查看答案和解析>>

科目:czsx 来源: 题型:

如图1所示为三角形纸片ABC,
AB
上有一点P.已知将A,B,C往内折至P时,出现折线
SR
TQ
QR
,其中Q、R、S、T四点会分别在
BC
AC
AP
BP
上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为(  )
精英家教网
A、1B、2C、3D、4

查看答案和解析>>

科目:czsx 来源: 题型:

如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时停止平移,在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、C2B分别交于点F、P.
(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1和△BC2D2重叠(阴影)部分面积为y,试求y与x的函数关系式,并写出自变量x的取值范围.精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:作△ABC的中位线DE,过点A作AF⊥DE于点F,这样△ABC就被分成三部分.
(1)请你在图1中继续操作,把△ABC拼接成面积与它相等的矩形.(画出示意图)
(2)若把一个三角形通过类似的操作可以拼接成一个与原三角形面积相等的正方形,那么原三角形的一边a与这边上的高h之间的数量关系是
1:2
1:2

(3)在图2的网格中画出一个符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.(画出示意图)

查看答案和解析>>

科目:czsx 来源: 题型:

如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?
分析:连接PA、PB、PC,则△ABC被分割成三个三角形,根据:
S△PAB+S△PBC+S△PAC=S△ABC,即:
1
2
ah1+
1
2
ah2+
1
2
ah3=
3
4
a2
,可得h1+h2+h3=
3
2
a

问题1:若点P是边长为a的等边△ABC外一点(如图二所示位置),点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3.探索h1,h2,h3之间有什么关系呢?并证明你的结论;
问题2:如图三,正方形ABCD的边长为a,点P是BC边上任意一点(可与B、C重合),B、C、D三点到射线AP的距离分别是h1,h2,h3,设h1+h2+h3=y,线段AP=x,求y与x的函数关系式,并求y的最大值与最小值.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=
1
2
AB
.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=
a
2
a
2

(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=
15cm
15cm

(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=
3:1
3:1

(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

24、(1)如图1中的两个图形成中心对称,找到对称中心O.
(2)图2中的两个图形是轴对称图形,画出它们的对称轴.
(3)在图3所示编号为(1)、(2)、(3)、(4)的四个三角形中,关于直线y对称的两个三角形的编号为
(1)(2)
;关于O对称的两个三角形的编号为
(1)(3)

(4)图4中,画出与△ABC关于直线x对称的△A1B1C1

(5)有一个大圆,两个相等的小圆.问三个圆怎样放,才能使组成的图形分别满足“①有一条对称轴;②有两条对称轴;③有无数条对称轴”?(分别在三个大圆上画两个小圆).

(6)如图5所示,圆心A、B、C的坐标分别是A (2,-3)、B (3,-3),C (4,-3),试画出这个图案关于原点O对称的图案.

查看答案和解析>>

科目:czsx 来源: 题型:

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,▱ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

科目:czsx 来源: 题型:

(本小题满分5分)

小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:

①取△ABC的边AB、AC的中点D、E,联结DE;

②过点A作AF⊥DE于点F;

(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.

(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.

(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.

 

查看答案和解析>>

科目:czsx 来源: 题型:

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。
(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

查看答案和解析>>

科目:czsx 来源: 题型:解答题

Rt△ABC在直角坐标系内的位置如图1所示,反比例函数数学公式在第一象限内的图象与BC边交于点D(4,m),与直线AB:y=数学公式x+b交于点E(2,n).
(1)m=______,点B的纵坐标为______;(用含n的代数式表示);
(2)若△BDE的面积为2,设直线AB与y轴交于点F,问:在射线FD上,是否存在异于点D的点P,使得以P、B、F为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,现有一动点M,从O点出发,沿x轴的正方向,以每秒2个单位的速度运动,设运动时间为t(s),问:是否存在这样的t,使得在直线AB上,有且只有一点N,满足∠MNC=45°?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
【小题1】当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由
【小题2】设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
【小题3】对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由.

图1                  图2                       图3

查看答案和解析>>

科目:czsx 来源: 题型:

(本小题满分5分)
小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:

①取△ABC的边AB、AC的中点D、E,联结DE;
②过点A作AF⊥DE于点F;
(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.
(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.

查看答案和解析>>

科目:czsx 来源: 题型:

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。

(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。

(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?

(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

 

查看答案和解析>>

科目:czsx 来源: 题型:

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.

1.当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由

2.设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;

3.对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由.

 

图1                  图2                       图3

 

查看答案和解析>>