精英家教网 > 试题搜索列表 >将316分解

将316分解答案解析

科目:gzsx 来源: 题型:

计算
x2+8
x2+4
的最值时,我们可以将
x2+8
x2+4
化成
x2+4+4
x2+4
=
(
x2+4
)
2
+4
x2+4
,再将分式分解成
x2+4
+
4
x2+4
,然后利用基本不等式求最值;借此,计算使得
x2+1+c
x2+c
1+c
c
对一切实数x都成立的正实数c的范围是
[1,+∞)
[1,+∞)

查看答案和解析>>

科目:gzsx 来源: 题型:

已知
e1
=(1,2),
e2
=(-2,3),
a
=(-1,2),试以
e1
e2
为基底,将
a
分解为λ1
e1
2
e2
的形式.

查看答案和解析>>

科目:gzsx 来源: 题型:

设计一个算法,将70分解成因数的乘积.

查看答案和解析>>

科目:gzsx 来源:不详 题型:解答题

已知
e1
=(1,2),
e2
=(-2,3),
a
=(-1,2),试以
e1
e2
为基底,将
a
分解为λ1
e1
2
e2
的形式.

查看答案和解析>>

科目:gzsx 来源:数学教研室 题型:044

设计一个算法,将70分解成素因数的乘积.

查看答案和解析>>

科目:gzsx 来源:2011年江苏省高考数学权威预测试卷(2)(解析版) 题型:解答题

计算的最值时,我们可以将化成,再将分式分解成,然后利用基本不等式求最值;借此,计算使得对一切实数x都成立的正实数c的范围是   

查看答案和解析>>

科目:gzsx 来源: 题型:044

设计一个算法,将70分解成素因数的乘积.

查看答案和解析>>

科目:gzsx 来源: 题型:

计算的最值时,我们可以将化成,再将分式分解成,然后利用基本不等式求最值;借此,计算使得对一切实数x都成立的正实数的范围是__▲____

查看答案和解析>>

科目:gzsx 来源: 题型:

有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:
a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13
n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26
给出如下变换公式:
X′=
x+1
2
(x∈N,1≤x≤26,x不能被2整除)
x
2
+13(x∈N,1≤x≤26,x能被2整除)

将明文转换成密文,如8→
8
2
+13=17,即h变成q;如5→
5+1
2
=3,即e变成c.
①按上述规定,将明文good译成的密文是什么?
②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么?

查看答案和解析>>

科目:gzsx 来源: 题型:

现代社会对破译密码的要求越来越高,有一种密码把英文的明文(真实文)按字母分解,其中英文的a、b、c、…、z的26个字母(不论大小写)依次对应1、2、3、…、26这26个自然数,见表格:
a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13
n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26
给出如下一个变换公式:x′=
x+1
2
(x∈R,1≤x≤26,x不能被2整除)
x
2
+13(x∈N,1≤x≤26,x能被2整除)

将明文转换成密文,如6→
6
2
+13=16即f变为p;9→
9+1
2
=5即i变为e.
按上述规定,明文good的密文是
dhho
dhho
,密文gawqj的明文是
maths
maths

查看答案和解析>>

科目:gzsx 来源: 题型:

某城市规划部门计划依托一矩形花园ABCD将之扩建成一个再大些的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知AB=3米,AD=2米.现有一飞鸟在矩形花园AMPN上空自由飞翔,并确定在花园AMPN内休息.
(1)要使飞鸟恰巧停在矩形花园ABCD内的概率不大于
316
,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.

查看答案和解析>>

科目:gzsx 来源: 题型:

(2009•普宁市模拟)为了确保神州七号飞船发射时的信息安全,信息须加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数(见下表):
a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 21 22 23 24 25 26
通过变换公式:x=
x+1
2
(x∈N*,x≤26,x不能被2整除)
x
2
+13(x∈N*,x≤26,x能被2整除)
,将明文转换成密文,如8→
8
2
+13
=17,即h变换成q;5→
5+1
2
=3
,即e变换成c.若按上述规定,若将明文译成的密文是shxc,那么原来的明文是(  )

查看答案和解析>>

科目:gzsx 来源: 题型:

将正整数12分解成两个正整数的乘积有:1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解,当p×q(p≤q且p、q∈N*)是正整数n的最佳分解时,我们规定函数f(n)=
p
q
,例如f(12)=
3
4
,关于函数f(n)有下列叙述:
①f(1)=
1
7

②f(24)=
3
8

③f(28)=
4
7

④f(144)=
9
16

其中正确的序号为
 
(填入所有正确的序号).

查看答案和解析>>

科目:gzsx 来源: 题型:

(2006•宝山区二模)有一密码把英文的明文(真实文)按字母分解,其中a,b,…,z的26个字母(不论大小写)分别对应着1,2,…,26个自然数,见下表:
a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13
n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26
(x是奇数)(x是偶数)给出如下一个变换公式:x′=
x+1
2
x
2
+13
,如8→
8
2
+13=17
,即h变成q.按上述规定,若将明文译成密文是shxc,那么原来的明文是
love
love

查看答案和解析>>

科目:gzsx 来源: 题型:

将多项式x5y-9xy5分别在下列范围内分解因式:(1)有理数范围;(2)实数范围;(3)复数范围.

查看答案和解析>>

科目:gzsx 来源: 题型:

现代社会对破译密码的难度要求越来越高.有一种密码把英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数(见下表):
精英家教网
现给出一个变换公式:x=
x+1
2
 
(x∈N+,x≤26,x不能被2整除)
x
2
+13 (x∈N+,x≤26,x能被2整除)
将明文转换成密文,如8→
8
2
+13=17
,即h变成q;5→
5+1
2
=3
,即e变成c.按上述规定,若将明文译成的密文是shxc,那么原来的明文是(  )
A、lhhoB、eovl
C、ohhlD、love

查看答案和解析>>

科目:gzsx 来源: 题型:

将下列因式进行因式分解:
(1)8a2-5ab-42b2
(2)(x+y)2-12(x+y)z+36z2
(3)2x2+2xy-3x-3y.

查看答案和解析>>

科目:gzsx 来源: 题型:

现代社会对破译密码的难度要求越来越高,有一处密码把英文的明文(真实名)按字母分解,其中英文a,b,c…,z这26个字母(不论大小写)依次对应1,2,3…,26这26个正整数.(见下表)
a b c d e f g h i J k l m
1 2 3 4 5 6 7 8 9 10 11 12 13
n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26
用如下变换公式:x'=
x+1
2
,(x∈N,1≤x≤26,x不能被2整除)
x
2
+13,(x∈N,1≤x≤26,x能被2整除)
将明文转换成密码.如:8→
8
2
+13=17,即h变成q:再如:25→
25+1
2
=13,即y变成m;上述变换规则,若将明文译成的密码是live,那么原来的明文是
wqri
wqri

查看答案和解析>>

科目:gzsx 来源: 题型:

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n(n∈N*)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A,B,C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1,a2,a3,并求出an
(2)记bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的积bibj(1≤i≤j≤n)的和)
(3)证明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)

查看答案和解析>>

科目:gzsx 来源: 题型:

将正整数12分解成两个整数的乘积有:1×12,2×6,3×4三种,又3×4是这三种分解中两数的差最小的,我们称3×4为12的最佳分解. 当p×q(p≤q)是正整数n的最佳分解时,我们规定函数f(n)=
p
q
.如f(12)=
3
4
.以下有关f(n)=
p
q
的说法中,正确的个数为(  )
①f(4)=1;
f(24)=
3
8

f(27)=
1
3

④若n是一个质数,则f(n)=
1
n

⑤若n是一个完全平方数,则f(n)=1.
A、1B、2C、3D、4

查看答案和解析>>