题目列表(包括答案和解析)
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知集合
具有性质
:对任意
,
与
至少一个属于
.
(1)分别判断集合
与
是否具有性质
,并说明理由;
(2)①求证:
;
②求证:
;
(3)研究当
和
时,集合
中的数列
是否一定成等差数列.
(本小题满分18分)过直线
上的点
作椭圆
的切线
、
,切点分别为
、
,联结
(1)当点
在直线
上运动时,证明:直线
恒过定点
;
(2)当
∥
时,定点
平分线段![]()
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知函数
;![]()
,
(1)当
为偶函数时,求
的值。
(2)当
时,
在
上是单调递增函数,求
的取值范围。
(3)当
时,(其中
,
),若
,且函数
的图像关于点
对称,在
处取得最小值,试探讨
应该满足的条件。
(本小题满分18分)设数列{
}的前
项和为
,且满足
=2-
,(
=1,2,3,…)
(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列{
}满足
=1,且
,求数列{
}的通项公式;
(Ⅲ)
,求
的前
项和![]()
(本小题满分18分)已知函数
,![]()
(Ⅰ)若
,求函数
的极值;
(Ⅱ)设函数
,求函数
的单调区间;
(Ⅲ)若在
(
)上存在一点
,使得![]()
![]()
成立,求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com