精英家教网 > 高中数学 > 题目详情
若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为(  )
A.(-
23
5
,+∞)
B.(-
23
5
,1)
C.(1,+∞)D.(-∞,-
23
5
)
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为(  )
A.(-
23
5
,+∞)
B.(-
23
5
,1)
C.(1,+∞)D.(-∞,-
23
5
)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省六校联盟高三(下)回头考数学试卷(理科)(解析版) 题型:选择题

若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为( )
A.
B.
C.(1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)在区间(0,+∞)内可导,导函数f′(x)是减函数,且f′(x)>0,设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,并设函数g(x)=kx+m.

(1)用x0f(x0)、f′(x0)表示m;

(2)证明当x0∈(0,+∞)时,g(x)≥f(x);

(3)若关于x的不等式x2+1≥ax+b上恒成立,其中a、b为实数,求b的取值范围及a与b 所满足的关系.

查看答案和解析>>

科目:高中数学 来源:0113 月考题 题型:解答题

设函数f(x)=log2(10-ax),a为常数,若f(3)=2。
(1)求a的值;
(2)求使f(x)≤0的x的取值范围;
(3)若在区间[1,3]内的每一个x值,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(4)讨论关于x的方程|f(x)|=c+9x-x2的根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

函数y=f(x)在区间(0,+∞)内可导,导函数f'(x)是减函数,且f′(x)>0。设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))的切线方程,并设函数g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)证明:当x0∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系。

查看答案和解析>>

科目:高中数学 来源:辽宁省高考真题 题型:解答题

函数y=f(x)在区间(0,+∞)内可导,导函数f'(x)是减函数,且f′(x)>0。设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))的切线方程,并设函数g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)证明:当x0∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系。

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
(1)方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
(2)函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是m∈(0,4);
(3)若函数y=
x2+ax+2
在区间(-∞,1]上是减函数,则实数a∈[-3,-2];
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线x=
1
3
对称.
(5)若对于任意x∈(1,3)不等式x2-ax+2<0恒成立,则a>
11
3

其中的真命题是
(1),(3),(5)
(1),(3),(5)
(写出所有真命题的编号).

查看答案和解析>>


同步练习册答案