精英家教网 > 高中数学 > 题目详情
函数f(x)=
x+1
x
图象的对称中心为(  )
A.(0,0)B.(0,1)C.(1,0)D.(1,1)
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x+1
x
图象的对称中心为(  )
A、(0,0)
B、(0,1)
C、(1,0)
D、(1,1)

查看答案和解析>>

科目:高中数学 来源:海淀区一模 题型:单选题

函数f(x)=
x+1
x
图象的对称中心为(  )
A.(0,0)B.(0,1)C.(1,0)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z)
,曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1
x+b
(a,b为常数),且方程f(x)=
3
2
x
有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:宣威市模拟 题型:解答题

设函数f(x)=ax+
1
x+b
(a,b为常数),且方程f(x)=
3
2
x
有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:海南 题型:解答题

设函数f(x)=ax+
1
x+b
(a,b∈Z)
,曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
ax+1x-1
(其中a为实数,x≠1),给出下列命题:
①当a=1时,f(x)在定义域上为单调增函数;
②f(x)的图象的对称中心为(1,a);
③对任意a∈R,f(x)都不是奇函数;
④当a=-1时,f(x)为偶函数;
⑤当a=2时,对于满足条件2<x1<x2的所有x1,x2总有f(x1)-f(x2)<3(x2-x1).
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数y=
x-1
x+1
图象的对称中心是(1,1);
②“x>2是x2-3x+2>0”的充分不必要条件;
③对任意两实数m,n,定义定点“*”如下:m*n=
m  若m≤n
n  若m>n
,则函数f(x)=log
1
2
(3x-2)*log2x
的值域为(-∞,0];
④若函数f(x)=
(3a-1)x+4a(x<1)
logax      (x≥1)
对任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,则实数a的取值范围是(-
1
7
,1],
其中正确命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
x
-log2
a+x
1-x
为奇函数.
(1)求常数a的值;
(2)判断函数的单调性,并说明理由;
(3)函数g(x)的图象由函数f(x)的图象先向右平移2个单位,再向上平移2个单位得到,写出g(x)的一个对称中心,若g(b)=1,求g(4-b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>


同步练习册答案