精英家教网 > 高中数学 > 题目详情
如果正实数x,y满足x+y=1,那么1-xy(  )
A.有最小值
1
2
和最大值1
B.有最小值
3
4
和最大值1
C.有最小值
3
4
而无最大值
D.无最小值而有最大值1
相关习题

科目:高中数学 来源: 题型:

如果正实数x,y满足x+y=1,那么1-xy(  )
A、有最小值
1
2
和最大值1
B、有最小值
3
4
和最大值1
C、有最小值
3
4
而无最大值
D、无最小值而有最大值1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果正实数x,y满足x+y=1,那么1-xy(  )
A.有最小值
1
2
和最大值1
B.有最小值
3
4
和最大值1
C.有最小值
3
4
而无最大值
D.无最小值而有最大值1

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京四中高一(下)期中数学试卷(解析版) 题型:选择题

如果正实数x,y满足x+y=1,那么1-xy( )
A.有最小值和最大值1
B.有最小值和最大值1
C.有最小值而无最大值
D.无最小值而有最大值1

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如果正实数x,y满足x+y=1,那么1-xy


  1. A.
    有最小值数学公式和最大值1
  2. B.
    有最小值数学公式和最大值1
  3. C.
    有最小值数学公式而无最大值
  4. D.
    无最小值而有最大值1

查看答案和解析>>

科目:高中数学 来源:2012年四川省眉山市高考数学二模试卷(文科)(解析版) 题型:解答题

对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为    .(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=数学公式和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为________.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:山东省济宁市2010届高三第一次模拟考试理科数学试题 题型:022

给出下列命题:

①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;

②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;

③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,,则x<0时,

其中正确的命题是________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=
x26
和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为
②④
②④
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

42、给出下列命题:
①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;
②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;
③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确的命题是
①②④
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;
②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;
③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确的命题是 ______.(把你认为正确命题的序号都填上)

查看答案和解析>>


同步练习册答案