精英家教网 > 高中数学 > 题目详情
已知下列命题:
①命题p:“?x0∈R,x02-x0-1>0”的否定¬p为:“?x∈R,x2-x-1≤0”;
②回归直线一定过样本中心(
.
x
.
y
);
③若a=0.32,b=20.3,c=log0.32,则c<a<b.
其中正确命题的个数为(  )
A.1B.2C.3D.0
相关习题

科目:高中数学 来源: 题型:

已知下列命题:
①命题p:“?x0∈R,x02-x0-1>0”的否定¬p为:“?x∈R,x2-x-1≤0”;
②回归直线一定过样本中心(
.
x
.
y
);
③若a=0.32,b=20.3,c=log0.32,则c<a<b.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列命题:
①命题p:“?x0∈R,x02-x0-1>0”的否定¬p为:“?x∈R,x2-x-1≤0”;
②回归直线一定过样本中心(
.
x
.
y
);
③若a=0.32,b=20.3,c=log0.32,则c<a<b.
其中正确命题的个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、若命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x0∈R,x02+x0+1≥0”B、命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x-m=0无实根,则m<0”C、已知f(x)是定义在R上的偶函数,且以4为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件D、若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源:蓝山县模拟 题型:单选题

已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )
A.命题“p∧q”是真命题B.命题“p∧(¬q)”是真命题
C.命题“(¬p)∧q”是真命题D.命题“(¬p)∧(¬q)”是真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.若命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x0∈R,x02+x0+1≥0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x-m=0无实根,则m<0”
C.已知f(x)是定义在R上的偶函数,且以4为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①用“辗转相除法”求得243,135 的最大公约数是9;
②命题p:?x∈R,x2-x+
1
4
<0
,则?p是?x0∈R,x02-x0+
1
4
≥0

③已知条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q成立的充分不必要条件;
④若
a
=(1,0,1),
b
=(-1,1,0)
,则
a
b
>=
π
2

⑤已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,则f(n)中共有n2-n+1项,当n=2时,f(2)=
1
2
+
1
3
+
1
4

⑥直线l:y=kx+1与双曲线C:x2-y2=1的左支有且仅有一个公共点,则k的取值范围是-1<k<1或k=
2

其中正确的命题的序号为
 

查看答案和解析>>


同步练习册答案