精英家教网 > 初中数学 > 题目详情

【题目】已知点分别在菱形的边上滑动(点不与重合),且

1)如图1,若,求证:

2)如图2,若不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;

3)如图3,若,请直接写出四边形的面积.

【答案】1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为

【解析】

1)根据菱形的性质及已知,得到,再证

根据三角形全等的性质即可得到结论;

2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;

3)根据菱形的面积公式,结合(2)的结论解答.

解:(1)∵四边形是菱形,

,∴

中,

2)若不垂直,(1)中的结论还成立证明如下:

如图,作,垂足分别为点

由(1)可得

中,

,∴

3)如图,连接交于点

,∴为等边三角形,

,∴,同理,

∴四边形的面积四边形的面积,

由(2)得四边形的面积四边形AECF的面积

∴四边形的面积为

∴四边形的面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD的一条边AD=8EBC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).

1)求AB的长;

2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点PA不重合).NAB沿长线上的一个动点,并且满足PM=BN.过点MMH⊥PB,垂足为H,连结MNPB于点F(如图2).

MPA的中点,求MH的长;

试问当点MN在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校组织的“学习强国”阅读知识竞赛中,每班参加比赛的人数相同,成绩分为四个等级,其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班班的成绩进行整理并绘制成如下的统计图:

1)在本次竞赛中,级及以上的人数有多少?

2)请你将下面的表格补充完整:

平均数(分)

中位数(分)

众数(分)

级及以上人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(04),△AOB为等边三角形,Px轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ

1)求点B的坐标;

2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由;

3)连接OQ,当OQAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=10(AB>AD),AD与BC之间的距离为6,点E在线段AB上移动,以E为圆心,AE长为半径作⊙E.

(1)如图1,若E是AB的中点,求⊙E在AD所在的直线上截得的弦长;

(2)如图2,若⊙E与BC所在的直线相切,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:

月用水量(吨)

户数

1)求这户家庭月用水量的平均数、众数和中位数;

2)根据上述数据,试估计该社区的月用水量;

3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一旅游团来到某旅游景点,看到售票处旁边的公告栏上写着:①一次购买10张以下(含10张),每张门票180元.②一次购买10张以上,超过10张的部分,每张门票6折优惠.

1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?

2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,当x=40时,y=300;当x=55时,y=150.

(1)求y与x之间的函数关系式;

(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-==……用正整数n表示这个规律是______

2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的……,第n+1次倒出的水量是L水的……,按照这种倒水方式,这1L水能否倒完?

3)拓展探究:①解方程:+++=

②化简:++…+

查看答案和解析>>

同步练习册答案