【题目】如图,网格中每个小正方形的边长为1,点B、C的坐标分别为(-1, 3), (0, 1).
(1)建立符合条件的直角坐标系(要求标出x轴,y轴和原点),并写出点A的坐标
(2)线段AB上任意一点的坐标可以表示为
(3)在y轴上找到一点P,使得S△ABP = 3S△ABC,求出点P的坐标.
【答案】(1)见解析,A(-4,3);(2)(x,3)(-4≤x≤-1);(3)P(0,9)或P(0,-3)
【解析】
(1)将C(0,1)向下平移1格即可得到原点位置,作出坐标系,再根据A的位置写出坐标;
(2)AB∥x轴,纵坐标都为3,横坐标在-4到-1之间,据此可解答;
(3)易得S△ABC=3,可求出S△ABP=9,设P点坐标为(0,m),以AB为底边,根据面积公式列方程求解.
解:(1)如图所示,点A坐标为(-4,3);
(2)∵A(-4,3),B(-1,3)
∴线段AB上任意一点的坐标可表示为(x,3)(-4≤x≤-1).
(3)由图可得S△ABP=3S△ABC=,
P点坐标为(0,m),则
解得或9
所以P点坐标为(0,9)或(0,-3).
科目:初中数学 来源: 题型:
【题目】如图,中,,,,点从点出发沿路径向终点以的速度运动,同时点从点出发沿路径向终点以的速度运动,两点都要到达相应的终点时才能停止运动.分别过和作于,于,则当运动时间____________时,与去全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角坐标平面上的,,,且,,.若抛物线经过、两点.
求、的值;
将抛物线向上平移若干个单位得到的新抛物线恰好经过点,求新抛物线的解析式;
设中的新抛物的顶点点,为新抛物线上点至点之间的一点,以点为圆心画图,当与轴和直线都相切时,联结、,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=90°, P为射线BC上任意一点(点P和点B不重合),分别以AB,AP为边在∠ABC内部作等边△ABE和等边△APQ, 连结QE并延长交BP于点F, 若FQ=6, AB=2,则BP=__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字,然后回答下列问题.
已知在平面内有两点P1 x1,y1 ,P1 x2,y2 其两点间的距离P1P2 = ,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2 x1|或|y2 y1|.
(1)已知 A (1,4)、B (-3,5),试求 A.、B两点间的距离;
(2)已知 A、B在平行于 y轴的直线上,点 A的纵坐标为-8,点 B的纵坐标为-1,试求 A、B两点的距 离;
(3)已知一个三角形各顶点坐标为 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由:
(4)在(3)的条件下,平面直角坐标系中,在 x轴上找一点 P,使 PD+PF的长度最短,求出点 P的坐 标以及 PD+PF的最短长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com