【题目】如图,上午8时,一条船从A处出发,以15海里/时的速度向正北航行,10时到达B处,从A、B望灯塔C,测得∠NAC=42°,∠NBC=84°,则从B处到灯塔C的距离_______.
科目:初中数学 来源: 题型:
【题目】菱形的边长为,,、分别是、的中点,、分别在、上,且.
求证:四边形是平行四边形;
当四边形是菱形时,求的长;
当四边形是矩形时,求此时点到点的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形是由大小、形状相同的“小等边三角形”按照一定的规律组成,其中第1幅图中有3个小等边三角形,第2幅图中有8个小边三角形,第3幅图中有15个小等边三角形,依此类推,则第10幅图中有( )个小等边三角形.
A.63B.80C.99D.120
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数满足条件:其十位数字是百位数字的两倍与个位数字的差,则称这样的三位数为“十全数”,将“十全数”s的百位数字与十位数字交换位置,交换后所得的新数叫做s的“十美数”,如231是一个“十全数”,321是231的“十美数”
(1)证明:任意一个“十全数”s的“十美数”都能被3整除;
(2)已知m为“十全数”,n是m的“十美数”,若m的两倍与n的差能被13整除,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于,两点(点在轴正半轴上),为等腰直角三角形,且面积为,现将抛物线沿方向平移,平移后的抛物线过点时,与轴的另一点为,其顶点为,对称轴与轴的交点为.
求、的值.
连接,试判断是否为等腰三角形,并说明理由.
现将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点,是否存在这样的点,使以点、、为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在中,,,,动点从点出发,以每秒个单位的速度沿方向向终点运动;同时,动点也从点出发,以每秒个单位的速度沿方向向终点运动.设两点运动的时间为秒.
连接,在点、运动过程中,与是否始终相似?请说明理由;
连接,设的面积为,求关于的函数关系式;
连接、,是否存在的值,使?若存在,求出的值;若不存在,请说明理由;
探索:把沿直线折叠成,设与交于点,当是直角三角形时,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com