精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.

(1)求证:直线DF与⊙O相切;

(2)若AE=7,BC=6,求AC的长.


(1)证明:如图,

连接OD.

∵AB=AC,

∴∠B=∠C,

∵OD=OC,

∴∠ODC=∠C,

∴∠ODC=∠B,

∴OD∥AB,

∵DF⊥AB,

∴OD⊥DF,

∵点D在⊙O上,

∴直线DF与⊙O相切;

(2)解:∵四边形ACDE是⊙O的内接四边形,

∴∠AED+∠ACD=180°,

∵∠AED+∠BED=180°,

∴∠BED=∠ACD,

∵∠B=∠B,

∴△BED∽△BCA,

=

∵OD∥AB,AO=CO,

∴BD=CD=BC=3,

又∵AE=7,

=

∴BE=2,

∴AC=AB=AE+BE=7+2=9.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下面四个立体图形中,三视图完全相同的是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:﹣14+(2﹣20+|﹣2015|﹣4cos60°.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,AD平分∠BAC,按如下步骤作图:

第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;

第二步,连接MN分别交AB、AC于点E、F;

第三步,连接DE、DF.

若BD=6,AF=4,CD=3,则BE的长是(  )

 

A.

2

B.

4

C.

6

D.

8

查看答案和解析>>

科目:初中数学 来源: 题型:


观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是  m.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图所示的几何体的主视图是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:


二次函数y=x2+4x﹣5的图象的对称轴为(  )

 

A.

x=4

B.

x=﹣4

C.

x=2

D.

x=﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是(  )

 

A.

2015π

B.

3019.5π

C.

3018π

D.

3024π

查看答案和解析>>

同步练习册答案