精英家教网 > 初中数学 > 题目详情

【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.

组别

时间(小时)

频数(人数)

频率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合计

1

请根据图表中的信息,解答下列问题:

(1)表中的a=   ,b=   ,中位数落在   组,将频数分布直方图补全;

(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?

(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.

【答案】(1)统计图详见解析;12,0.2,1≤t≤1.5;(2)300;(3)

【解析】

(1)利用A组的频数除以A组的频率即可求得抽取的学生数;再用抽取学生的人数乘以B组的频率即可求得a值;用D组的频数除以抽取的学生数即可得b根据中位数的定义即可确定中位数所在的位置;根据所得的数值补全条形统计图即可;(2)利用学校的总人数乘以每周课余阅读时间不足0.5小时的学生的频率即可得每周课余阅读时间不足0.5小时的学生人数;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.

(1)∵抽取的学生数为6÷0.15=40人,

∴a=0.3×40=12人,b=8÷40=0.2,

中位数落在1≤t≤1.5组,

频数分布直方图如下:

故答案为:12,0.2,1≤t≤1.5;

(2)该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有:0.15×2000=300人;

(3)树状图如图所示:

总共有12种等可能的结果,其中刚好是1名男生和1名女生的结果有6种,

抽取的两名学生刚好是1名男生和1名女生的概率==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是(  )

A. 形状相同 B. 周长相等 C. 面积相等 D. 全等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).

(1)若△BDE是以BE为底的等腰三角形,求t的值;

(2)若△BDE为直角三角形,求t的值;

(3)当S△BCE时,求所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2﹣).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴交于点,与轴交于点,直线经过两点.

求抛物线的解析式;

上方的抛物线上有一动点

如图,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;

如图,过点的直线于点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBC边上的高,AE、BF分别是∠BAC、ABC的平分线,∠BAC=50°,ABC=60°,则∠EAD+ACD=(  )

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,点P在边AB上,沿着PC折叠纸片使B点落在边AD上的E点处,过点EEF∥ABPCF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)若tan∠BCP=,AB=3cm,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数图象的一部分图象过点A(-30)对称轴为直线x=1,给出四个结论:①c0②若点B(-1.5y1)C(-2.5y2)为函数图象上的两点,则y1y22ab=0 0.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD为等边△ABC的高,EF分别为线段ADAC上的动点,且AECF,当BF+CE取得最小值时,∠AFB=(  )

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙PAB,BC都相切.

(1)求⊙P半径;

(2)求sin∠PBC.

查看答案和解析>>

同步练习册答案